Featured Research

from universities, journals, and other organizations

Snowfall in a warmer world: Big snowstorms will still occur in Northern Hemisphere, study shows

Date:
August 27, 2014
Source:
Massachusetts Institute of Technology
Summary:
Big snowstorms will still occur in the Northern Hemisphere following global warming, a study shows. While most areas in the Northern Hemisphere will likely experience less snowfall throughout a season, the study concludes that extreme snow events will still occur, even in a future with significant warming.

"You might expect with a warmer climate there should be major changes in snowfall in general," O'Gorman says. "But that seems to be true to a greater extent for average snowfall than for the intensities of the heaviest snowfall events."
Credit: Image by Christine Daniloff/MIT

If ever there were a silver lining to global warming, it might be the prospect of milder winters. After all, it stands to reason that a warmer climate would generate less snow.

Related Articles


But a new MIT study suggests that you shouldn't put your shovels away just yet. While most areas in the Northern Hemisphere will likely experience less snowfall throughout a season, the study concludes that extreme snow events will still occur, even in a future with significant warming. That means that, for example, places like Boston may see less snowy winters overall, punctuated in some years by blizzards that drop a foot or two of snow.

"Many studies have looked at average snowfall over a season in climate models, but there's less known about these very heavy snowfalls," says study author Paul O'Gorman, an associate professor in MIT's Department of Earth, Atmospheric and Planetary Sciences. "In some regions, it is possible for average snowfall to decrease, but the snowfall extremes actually intensify."

O'Gorman studied daily snowfall across the Northern Hemisphere using 20 different climate models, each of which projected climate change over a 100-year period, given certain levels of greenhouse gas emissions. He looked at both average seasonal snowfall and extreme snowfall events under current climate conditions, and also following projected future warming.

Not surprisingly, O'Gorman found that under relatively high warming scenarios, low-elevation regions with winter temperatures initially just below freezing experienced about a 65 percent reduction in average winter snowfall. However, in these same regions, the heaviest snowstorms became only 8 percent less intense. In some higher-latitude regions, extreme snow events became more intense, depositing 10 percent more snow, even under scenarios of relatively high global warming.

"You might expect with a warmer climate there should be major changes in snowfall in general," O'Gorman says. "But that seems to be true to a greater extent for average snowfall than for the intensities of the heaviest snowfall events."

O'Gorman has published the results of his study this week in the journal Nature.

Daily snowfall

For the most part, researchers have only been able to analyze snowfall on a seasonal scale, estimating a winter's average snow amounts with climate change. Such analyses, while useful, only paint a broad picture of snowfall's response to global warming, and may miss specific events, like a large blizzard that may occur over a day or two.

Daily snowfall in a range of climate model simulations has recently been made available through the Coupled Model Intercomparison Project -- a growing archive of climate modeling output, including snowfall, that modeling centers and researchers around the world contribute to and analyze.

O'Gorman analyzed daily snow amounts from simulations with 20 different climate models in the archive. Each model simulated a "control climate," for the years 1981 to 2000, as well as a "warm climate," for the years 2081 to 2100, assuming relatively high emissions of greenhouse gases.

Over this 100-year period, O'Gorman found that average snowfall decreased substantially in many Northern Hemisphere regions in warm-climate scenarios compared with the milder control climates, but that snowfall amounts in the largest snowstorms did not decrease to the same extent.

He warned, however, that changes in snowfall extremes can be larger in regions with little snowfall to begin with, such as the southwestern United States. He also notes that while this study focuses on percentage changes in the amount of snowfall in extreme snowfall events, there can be larger changes in the frequency of such events.

From the simulations, O'Gorman found that it takes greater climate warming to reduce the intensity of extreme snowstorms than to reduce average seasonal snowfall. Specifically, a region would experience less seasonal snow if average winter temperatures were initially above minus 14 degrees Celsius (7 degrees Fahrenheit). But the heaviest snowstorms would become less intense only above minus 9 C (16 F).

A sweet spot for extreme snowfall

What's more, O'Gorman found that there's a narrow daily temperature range, just below the freezing point, in which extreme snow events tend to occur -- a sweet spot that does not change with global warming. This is in contrast to average snow events, which may occur over a broader temperature range.

"People may know the expression, 'It's too cold to snow' -- if it's very cold, there is too little water vapor in the air to support a very heavy snowfall, and if it's too warm, most of the precipitation will fall as rain," O'Gorman says. "Snowfall extremes still occur in the same narrow temperature range with climate change, and so they respond differently to climate change compared to rainfall extremes or average snowfall."

Anthony Broccoli, professor of environmental sciences at Rutgers University, notes that the study's results may have implications for the public perception of climate change. For example, while people may be tempted to think that a winter with several extreme snowstorms calls global warming into question, that may not be the case.

"We often hear people claim that a big snowstorm is evidence that the climate is not warming, but these results make it clear that such storms do not provide much evidence about a changing climate," says Broccoli, who did not contribute to the study. "Those of us who live in the Northeast will likely continue to see occasional heavy snowstorms, especially in midwinter when temperatures are at their lowest."


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by Jennifer Chu. Note: Materials may be edited for content and length.


Journal Reference:

  1. Paul A. O’Gorman. Contrasting responses of mean and extreme snowfall to climate change. Nature, 2014; 512 (7515): 416 DOI: 10.1038/nature13625

Cite This Page:

Massachusetts Institute of Technology. "Snowfall in a warmer world: Big snowstorms will still occur in Northern Hemisphere, study shows." ScienceDaily. ScienceDaily, 27 August 2014. <www.sciencedaily.com/releases/2014/08/140827131755.htm>.
Massachusetts Institute of Technology. (2014, August 27). Snowfall in a warmer world: Big snowstorms will still occur in Northern Hemisphere, study shows. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2014/08/140827131755.htm
Massachusetts Institute of Technology. "Snowfall in a warmer world: Big snowstorms will still occur in Northern Hemisphere, study shows." ScienceDaily. www.sciencedaily.com/releases/2014/08/140827131755.htm (accessed October 25, 2014).

Share This



More Earth & Climate News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins