Featured Research

from universities, journals, and other organizations

Not all phytoplankton in the ocean need to take their vitamins

Date:
August 29, 2014
Source:
Canadian Institute for Advanced Research
Summary:
Some species of marine phytoplankton, such as the prolific bloomer Emiliania huxleyi, which can grow so big it can be seen from space, can grow without consuming vitamin B1 (thiamine), researchers have discovered. Until now, many marine microbes with cells that have a nucleus -- eukaryotes -- were thought to depend on other organisms to produce thiamine. If this were the case, B1 would be a major factor in controlling the growth of algae such as E. huxleyi.

This is Emiliana huxleyi, a marine phytoplankton whose blooms can grow so large they are visible from space. The researchers found it does not require vitamin B1 to grow, as previously thought.
Credit: Photo by Bjoern Rost, Alfred Wegener Institut

Some species of marine phytoplankton, such as the prolific bloomer Emiliania huxleyi, can grow without consuming vitamin B1 (thiamine), researchers have discovered. The finding contradicts the common view that E. huxleyi and many other eukaryotic microbes depend on scarce supplies of thiamine in the ocean to survive.

Related Articles


"It's a really different way to think about the ocean," says CIFAR Senior Fellow Alexandra Worden, co-author on The ISME Journal paper with CIFAR fellows John Archibald (Dalhousie University), Adriαn Reyes-Prieto (University of New Brunswick) and three lead authors from Worden's lab at the Monterey Bay Aquarium Research Institute, Darcy McRose, Jian Guo and Adam Monier.

All living creatures need thiamine to live, as well as other vitamins. Organisms may produce some of their own vitamins, the way that human cells create vitamin D with help from sunlight, but sometimes they rely on other organisms to produce the vitamins they need and then consume them. For example, oranges and other fruits produce vitamin C, which humans need in their diets.

Until now, many marine microbes with cells that have a nucleus -- eukaryotes -- were thought to depend on other organisms to produce thiamine. If this were the case, B1 would be a major factor in controlling the growth of algae such as E. huxleyi, whose blooms are sometimes so large you can detect them from space. But the researchers found that E. huxleyi grows equally well in water that contains a precursor chemical to thiamine, known as HMP, as it does in an environment rich with thiamine. In fact, it could grow without any thiamine at all.

"If we added thiamine or we added the intermediate, there was absolutely no difference in the growth rate. They were growing equally well," Worden says.

It was the discovery of a surprising biological mechanism that led the researchers toward this new understanding of thiamine. Genetic analysis had revealed 31 new eukaryotic riboswitches, which are segments of RNA that operate like mechanical switches to turn genes on or off. The researchers then found, unexpectedly, that the riboswitches were tied to genes of unknown function, not genes known to be connected with the production of thiamine. Further testing revealed these organisms didn't only have a taste for thiamine -- they liked HMP too.

"Our study shows that conclusions regarding the importance of vitamin B1 in regulating algal communities need to be re-evaluated," Worden says.

This is the second recent study to find that vitamin B1 is less important than previously thought. Another paper in The ISME Journal published this August by Stephen Giovannoni's lab at Oregon State University found that the most abundant strain of bacteria in the ocean, SAR11, grows well in an environment with HMP but not with thiamine alone.

Biochemistry suggests HMP should be more stable than thiamine in the environment, but researchers must next investigate how plentiful the molecule is in the open ocean. Understanding how phytoplankton survive is crucial for predicting how climate change could alter Earth's marine ecosystem; for example, as the supply of vitamins in the ocean depletes. Phytoplankton take up carbon dioxide and eventually sink to the bottom of the ocean, which makes their growth a major factor in how much carbon remains in the atmosphere.

"If you want to model the global carbon cycle and you're putting into the equation that external sources of this vitamin are needed and critical for certain algae (based on prior reports), that its availability shapes which phytoplankton will grow, your predictions will be incorrect," Worden says.

She says this study shows that marine researchers need to reconsider the methods they have relied on to understand the genetic processes by which ocean microbes adapt, evolve and survive. In the past these methods have been based largely on analogy to biochemical pathways as characterized in medically, industrially or agriculturally relevant organisms, i.e., "model organisms."

"What we need to recognize is that there might be some other piece to the puzzle, that is different from that in the characterized model organisms, especially when most, but not all of the parts known from model organisms are present," Worden says.


Story Source:

The above story is based on materials provided by Canadian Institute for Advanced Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. Darcy McRose, Jian Guo, Adam Monier, Sebastian Sudek, Susanne Wilken, Shuangchun Yan, Thomas Mock, John M Archibald, Tadhg P Begley, Adrian Reyes-Prieto, Alexandra Z Worden. Alternatives to vitamin B1 uptake revealed with discovery of riboswitches in multiple marine eukaryotic lineages. The ISME Journal, 2014; DOI: 10.1038/ismej.2014.146

Cite This Page:

Canadian Institute for Advanced Research. "Not all phytoplankton in the ocean need to take their vitamins." ScienceDaily. ScienceDaily, 29 August 2014. <www.sciencedaily.com/releases/2014/08/140829103422.htm>.
Canadian Institute for Advanced Research. (2014, August 29). Not all phytoplankton in the ocean need to take their vitamins. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2014/08/140829103422.htm
Canadian Institute for Advanced Research. "Not all phytoplankton in the ocean need to take their vitamins." ScienceDaily. www.sciencedaily.com/releases/2014/08/140829103422.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com
3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) — A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins