New! Sign up for our free email newsletter.
Science News
from research organizations

Flexible organic electronics mimic biological mechanosensory nerves

Artificial nerves can be used for neurorobotics and neuroprosthetics

Date:
May 31, 2018
Source:
Seoul National University
Summary:
Researchers have developed artificial mechanosensory nerves using flexible organic devices to emulate biological sensory afferent nerves. They used the artificial mechanosensory nerves to control a disabled insect leg and distinguish braille characters. The research describes artificial mechanosensory nerves based on flexible organic devices to emulate biological mechanosensory nerves. Devices that mimic the signal processing and functionality of biological systems can simplify the design of bioinspired system or reduce power consumption.
Share:
FULL STORY

Researchers at Seoul National University and Stanford University developed artificial mechanosensory nerves using flexible organic devices to emulate biological sensory afferent nerves. They used the artificial mechanosensory nerves to control a disabled insect leg and distinguish braille characters.

Compared to conventional digital computers, biological nervous system is powerful for real-world problems, such as visual image processing, voice recognition, tactile sensing, and movement control. This inspired scientists and engineers to work on neuromorphic computing, bioinspired sensors, robot control, and prosthetics. The previous approaches involved implementations at the software level on conventional digital computers and circuit designs using classical silicon devices which have shown critical issues related to power consumption, cost, and multifunction.

The research describes artificial mechanosensory nerves based on flexible organic devices to emulate biological mechanosensory nerves. "The recently found mechanisms of information processing in biological mechanosensory nerves were adopted in our artificial system," said Zhenan Bao at Stanford University.

The artificial mechanosensory nerves are composed of three essential components: mechanoreceptors (resistive pressure sensors), neurons (organic ring oscillators), and synapses (organic electrochemical transistors). The pressure information from artificial mechanoreceptors can be converted to action potentials through artificial neurons. Multiple action potentials can be integrated into an artificial synapse to actuate biological muscles and recognize braille characters.

Devices that mimic the signal processing and functionality of biological systems can simplify the design of bioinspired system or reduce power consumption. The researchers said organic devices are advantageous because their functional properties can be tuned, they can be printed on a large area at a low cost, and they are flexible like soft biological systems.

Wentao Xu, a researcher at Seoul National University, and Yeongin Kim and Alex Chortos, graduate students at Stanford University, used their artificial mechanosensory nerves to detect large-scale textures and object movements and distinguish braille characters. They also connected the artificial mechanosensory nerves to motor nerves in a detached insect leg and control muscles.

Professor Tae-Woo Lee, a Professor at Seoul National University said, "Our artificial mechanosensory nerves can be used for bioinspired robots and prosthetics compatible with and comfortable for humans." Lee said, "The development of human-like robots and prosthetics that help people with neurological disabilities can benefit from our work."


Story Source:

Materials provided by Seoul National University. Note: Content may be edited for style and length.


Journal Reference:

  1. Yeongin Kim, Alex Chortos, Wentao Xu, Yuxin Liu, Jin Young Oh, Donghee Son, Jiheong Kang, Amir M. Foudeh, Chenxin Zhu, Yeongjun Lee, Simiao Niu, Jia Liu, Raphael Pfattner, Zhenan Bao, Tae-Woo Lee. A bioinspired flexible organic artificial afferent nerve. Science, 2018 DOI: 10.1126/science.aao0098

Cite This Page:

Seoul National University. "Flexible organic electronics mimic biological mechanosensory nerves." ScienceDaily. ScienceDaily, 31 May 2018. <www.sciencedaily.com/releases/2018/05/180531142942.htm>.
Seoul National University. (2018, May 31). Flexible organic electronics mimic biological mechanosensory nerves. ScienceDaily. Retrieved March 28, 2024 from www.sciencedaily.com/releases/2018/05/180531142942.htm
Seoul National University. "Flexible organic electronics mimic biological mechanosensory nerves." ScienceDaily. www.sciencedaily.com/releases/2018/05/180531142942.htm (accessed March 28, 2024).

Explore More

from ScienceDaily

MORE COVERAGE

RELATED STORIES