New! Sign up for our free email newsletter.
Science News
from research organizations

Hubble Finds Young Stars In Cosmic Dance

Date:
March 16, 2000
Source:
Space Telescope Science Institute
Summary:
A trio of newborn stars, 1,400 light-years away are taking part in a complex dance, as revealed by recent NASA Hubble Space Telescope (HST)observations. Two are now closely embracing each other, while the third has parted from their company.
Share:
FULL STORY

EMBARGOED UNTIL: 1:00 a.m. (EST) March 16, 2000

CONTACT: Ray Villard, Space Telescope Science Institute, Baltimore, MD (Phone: 410-338-4514; E-mail: villard@stsci.edu)

Bo Reipurth, Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO (Phone: 303-735-2640; E-mail: reipurth@casa.colorado.edu.)

A trio of newborn stars, 1,400 light-years away are taking part in a complex dance, as revealed by recent NASA Hubble Space Telescope (HST) observations. Two are now closely embracing each other, while the third has parted from their company.

The new HST images in infrared light, combined with ground-based radio observations, reveal three young stars. These stars are located near a huge torus, or donut, of gas and dust from which they formed.

However, what's surprising is that the stars are not located at the center of this donut. Instead, a pair of stars is offset to one side, below the torus, while the third star is off to the other side, far above it. Newborn stars are normally found precisely in the centers of such donuts of proto-stellar material.

The pair of stars below the donut coincides with the point of origin of huge jets of gas blasted into space by one of the twin stars. Each oppositely directed stream is 12 light-years long.

"It's mind-boggling that small stars like this can have such a profound influence on their environment," says Bo Reipurth of the University of Colorado, who headed the research team that photographed the region with HST's infrared and visible-light cameras.

It appears that a gravitational brawl among the stars occurred a few thousand years ago and kicked out one member. As a result, the two other stars were joined together as a tight binary pair and flew off in the opposite direction. Computer simulations of three-body stellar interactions support such a scenario. But, future observations to directly measure the motions of the stars will be needed to confirm this conclusion.

The components of the binary star are so close to each other - within five billion miles - that even Hubble does not resolve them. But the radio observations, with the Very Large Array in New Mexico, show two pairs of stellar jets almost at right angles, implying that what appears in the Hubble Space Telescope images as a single object really is two separate stars, each of which drives an outflow consisting of pairs of oppositely directed jets.

These observations may provide an important clue to how the masses of stars are determined. Now that the newborn stars are outside the giant donut, they can no longer feed on the rich supply of gas and dust in the abandoned torus. And so they can no longer grow. Thus, in this case, the three-body interaction determined the stars' final masses.

Newborn stars grow - and at the same time produce giant jets - by ingesting large quantities of gas and dust. Since each component of the close binary still produces jets, the stars must still retain small inner gas disks for fueling the continuing outflow activity.

These inner disks must have been dragged along for the ride as the stars were ejected from the center of the giant torus. But as these small reservoirs are depleted, the remarkable jet activity should begin to fizzle out.

The huge jet seen in Hubble's visible-light images comes from one of the members of the binary. This star spews out streams of gas in opposite directions, like water from a garden hose. It is not a smooth flow, but rather happens episodically, creating lumps of gas that fly across space at over one million miles per hour. These gaseous cannonballs catch up with and "rear-end" slower moving blobs, creating a pattern that resembles a string of Christmas lights embedded in the jet.

The results were presented in the December II issue of Astronomy and Astrophysics.

The research team consists of Bo Reipurth, Ka Chun Yu and John Bally from the University of Colorado; Steve Heathcote from Cerro Tololo Inter-American Observatory, and Luis Felipe Rodriguez from the Universidad Nacional Autonoma de Mexico (UNAM).

The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc. for NASA, under contract with NASA's Goddard Space Flight Center, Greenbelt, MD. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency.

NOTE TO EDITORS: For additional information, please contact Bo Reipurth, University of Colorado, Center for Astrophysics and Space Astronomy, Campus Box 389, Boulder, CO 80309, (phone) 303-735-2640, (e-mail) reipurth@casa.colorado.edu.

Images files are available on the Internet at:http://oposite.stsci.edu/pubinfo/pr/2000/05 and via links inhttp://oposite.stsci.edu/pubinfo/latest andhttp://oposite.stsci.edu/pubinfo/pictures.

STScI press releases and other information are available automatically by sending an Internet electronic mail message to public-request@stsci.edu. Leave the subject line blank. In the body of the message (not the subject line) users should type the word "subscribe" (don't use quotes). The system will respond with a confirmation of the subscription, and users will receive new press releases as they are issued. Please subscribe using the email account with which you would like to receive list messages. To unsubscribe, send mail to public-request@stsci.edu. Leave the subject line blank. Type "unsubscribe" (don't use quotes) in the body of the message. Please unsubscribe using the email account that you used to subscribe to the list.

****************************************

PHOTO CAPTION

EMBARGOED UNTIL: 1:00 a.m. (EST) March 16, 2000

PHOTO NO.: STScI-PRC00-05

HUBBLE FINDS YOUNG STARS IN COSMIC DANCE

This composite image, made with two cameras aboard NASA's Hubble Space Telescope, shows a pair of 12 light-year-long jets of gas blasted into space from a young system of three stars. The jet is seen in visible light, and its dusty disk and stars are seen in infrared light. These stars are located near a huge torus, or donut, of gas and dust from which they formed. This torus is tilted edge-on and can be seen as a dark bar near the bottom of the picture.

Apparently, a gravitational brawl among the stars occurred a few thousand years ago and kicked out one member (on the left edge of the bright blob above the disk). As a result, the two other stars were joined together as a tight binary pair and flew off in the opposite direction, and appear as a red blob below the disk.

The huge jet comes from one of the stars in this tight binary pair. The star spews out streams of gas in opposite directions, like water from a garden hose. It is not a smooth flow, but rather happens episodically, creating lumps of gas that fly across space at over one million miles per hour. These gaseous cannonballs catch up with and "rear-end" slower moving blobs, creating a pattern that resembles a string of Christmas lights embedded in the jet.

The visible-light image was taken with Hubble's Wide Field Planetary Camera 2 in Nov. 1998 and the infrared image by Hubble's Near Infrared Camera and Multi-Object Spectrometer in Mar. 1998. The disk and associated stars are embedded in a large dark cloud and are only visible at infrared wavelengths.

Credit: NASA and B. Reipurth (CASA, Univ. of Colorado)

The research team consists of Bo Reipurth, Ka Chun Yu and John Bally from the University of Colorado; Steve Heathcote from Cerro Tololo Inter-American Observatory, and Luis Felipe Rodriguez from the Universidad Nacional Autonoma de Mexico (UNA

M).

Story Source:

Materials provided by Space Telescope Science Institute. Note: Content may be edited for style and length.


Cite This Page:

Space Telescope Science Institute. "Hubble Finds Young Stars In Cosmic Dance." ScienceDaily. ScienceDaily, 16 March 2000. <www.sciencedaily.com/releases/2000/03/000316071233.htm>.
Space Telescope Science Institute. (2000, March 16). Hubble Finds Young Stars In Cosmic Dance. ScienceDaily. Retrieved December 12, 2024 from www.sciencedaily.com/releases/2000/03/000316071233.htm
Space Telescope Science Institute. "Hubble Finds Young Stars In Cosmic Dance." ScienceDaily. www.sciencedaily.com/releases/2000/03/000316071233.htm (accessed December 12, 2024).

Explore More

from ScienceDaily

RELATED STORIES