New! Sign up for our free email newsletter.
Science News
from research organizations

Cheaper way to produce nickel ferrite ceramic thin films

Date:
September 24, 2012
Source:
North Carolina State University
Summary:
Researchers have demonstrated a less-expensive way to create textured nickel ferrite (NFO) ceramic thin films, which can easily be scaled up to address manufacturing needs. NFO is a magnetic material that holds promise for microwave technologies and next-generation memory devices.
Share:
FULL STORY

Researchers from North Carolina State University and the Georgia Institute of Technology have demonstrated a less-expensive way to create textured nickel ferrite (NFO) ceramic thin films, which can easily be scaled up to address manufacturing needs. NFO is a magnetic material that holds promise for microwave technologies and next-generation memory devices.

Specifically, this is the first time researchers have used a chemical deposition process to create NFO thin films that are "textured" -- meaning they have an aligned crystalline structure. Arraying the crystalline structure in an orderly fashion is important because it maximizes the magnetic properties of the material.

Using a chemical deposition process also makes it easier to modify, or "dope," the NFO by adding additional materials, such as zinc. By doping the NFO, researchers can optimize the material for various applications. For example, adding zinc allows the NFO to retain its magnetic properties at higher temperatures.

The technique used to create the NFO thin films begins by introducing nickel and iron compounds into an organic solvent to create an NFO solution. The solution is then injected onto a silicon wafer that has been coated with platinum. The wafer is then spun, spreading the solution uniformly across the wafer's surface. The wafer is heated to evaporate the solvent, then heated again to 750 degrees Celsius to crystallize the NFO.

"This approach can be used to deposit textured NFO thin films over areas at least as large as 10 centimeters by 10 centimeters," says Dr. Justin Schwartz, co-author of the paper, Kobe Steel Distinguished Professor and Department Head of the Materials Science and Engineering Department at NC State. Previous efforts to create textured NFO thin films have relied on techniques that can only deposit such thin films over a small area.

The paper, "Growth of (111) oriented NiFe2O4 polycrystalline thin films on Pt (111) via sol-gel processing," was published online Sept. 19 in the Journal of Applied Physics. The paper's lead author is Safoura Seifikar, a Ph.D. student at NC State. The paper was co-authored by Edward Sachet, a Ph.D. student at NC State; Dr. Thomas Rawdanowicz, research professor at NC State; Ali Tabei, a Ph.D. student at Georgia Tech; and Dr. Nazanin Bassiri-Gharb of Georgia Tech. The research was funded by the National Science Foundation.


Story Source:

Materials provided by North Carolina State University. Note: Content may be edited for style and length.


Journal Reference:

  1. Safoura Seifikar, Ali Tabei, Edward Sachet, Thomas Rawdanowicz, Nazanin Bassiri-Gharb, Justin Schwartz. Growth of (111) oriented NiFe2O4 polycrystalline thin films on Pt (111) via sol-gel processing. Journal of Applied Physics, 2012; 112 (6): 063908 DOI: 10.1063/1.4752725

Cite This Page:

North Carolina State University. "Cheaper way to produce nickel ferrite ceramic thin films." ScienceDaily. ScienceDaily, 24 September 2012. <www.sciencedaily.com/releases/2012/09/120924111828.htm>.
North Carolina State University. (2012, September 24). Cheaper way to produce nickel ferrite ceramic thin films. ScienceDaily. Retrieved April 23, 2024 from www.sciencedaily.com/releases/2012/09/120924111828.htm
North Carolina State University. "Cheaper way to produce nickel ferrite ceramic thin films." ScienceDaily. www.sciencedaily.com/releases/2012/09/120924111828.htm (accessed April 23, 2024).

Explore More

from ScienceDaily

RELATED STORIES