Science News
from research organizations

Emissions-free cars get closer

Date:
January 8, 2015
Source:
University of Delaware
Summary:
Hydrogen fuel cells -- possibly the best option for emission-free vehicles -- require costly platinum. Nickel and other metals work but aren't nearly as efficient. New findings help pin down the basic mechanisms of the fuel-cell reaction on platinum, which will help researchers create alternative electrocatalysts.
Share:
FULL STORY

New findings could help create alternative electrocatalysts for vehicles powered by hydrogen fuel cells, such as this bus at the University of Delaware.
Credit: University of Delaware

A University of Delaware research team is considering the important question of what it will take to create an affordable emissions-free car.

The question, an issue of engineering and economics, is being studied by a team led by Yushan Yan, Distinguished Professor of Engineering.

Hydrogen fuel cells may be the best option for powering zero-emission vehicles: Toyota has just introduced a hydrogen-powered car in Japan and will make them available in the United States in 2015.

But these fuel cells require an electrocatalyst -- a platinum surface -- to increase the reaction rate, and the cost of the precious metal makes it hard for hydrogen fuel cells to compete economically with the internal combustion engine.

Yan's group has been working on a new type of fuel cells, using alkaline polymers that could employ a number of non-precious metal catalysts such as nickel, which is a thousand times cheaper than platinum.

But using alkaline polymers leads to a high pH, and researchers have discovered that the reaction goes about 100 times more slowly in this environment that it does in an acid. In order to create less expensive electrocatalysts that work well in an alkaline environment, researchers have to know exactly how the reaction unfolds, and what its most essential mechanisms are.

A paper by Yan's research group, published in the Jan. 8 issue of the multidisciplinary journal Nature Communications, helps pin down the basic mechanisms of the fuel-cell reaction on platinum, which will help researchers create alternative electrocatalysts.

After extensive testing, the team found that the hydrogen binding energy (the amount of energy released when a hydrogen molecule adheres to a metal surface) was the most important factor predicting the rate of the reaction -- information essential to researchers designing new catalyst materials.

The paper was authored by the laboratory's recent postdoctoral researchers Wenchao Sheng and Minrui Gao; current postdoctoral student Zhongbin Zhuang and current doctoral candidate Jie Zheng, along with Yan and Columbia University's Jingguang Chen.


Story Source:

Materials provided by University of Delaware. Note: Content may be edited for style and length.


Journal Reference:

  1. Wenchao Sheng, Zhongbin Zhuang, Minrui Gao, Jie Zheng, Jingguang G. Chen, Yushan Yan. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nature Communications, 2015; 6: 5848 DOI: 10.1038/ncomms6848

Cite This Page:

University of Delaware. "Emissions-free cars get closer." ScienceDaily. ScienceDaily, 8 January 2015. <www.sciencedaily.com/releases/2015/01/150108125957.htm>.
University of Delaware. (2015, January 8). Emissions-free cars get closer. ScienceDaily. Retrieved May 24, 2017 from www.sciencedaily.com/releases/2015/01/150108125957.htm
University of Delaware. "Emissions-free cars get closer." ScienceDaily. www.sciencedaily.com/releases/2015/01/150108125957.htm (accessed May 24, 2017).

RELATED STORIES