Science News
from research organizations

Novel capping strategy improves stability of perovskite nanocrystals

Study addresses instability issues with organometal-halide perovskites, a promising class of materials for solar cells, LEDs, and other applications

Date:
June 13, 2016
Source:
University of California - Santa Cruz
Summary:
Perovskite materials have shown great promise for use in next-generation solar cells and LEDs, but their instability remains a critical limitation. Atoms on the surface are vulnerable to reactions that can degrade the material, so molecules that bind to the surface (capping ligands) are used both to stabilize perovskite nanocrystals and to control their properties. Researchers have used unique branched ligands to synthesize perovskite nanocrystals with greatly improved stability and uniform particle size.
Share:
FULL STORY

Perovskite nanocrystals (PNCs) dispersed in ethanol under room light and ultraviolet light show better stability of PNCs capped with branching ligands compared to those capped with straight ligands.
Credit: Binbin Luo

Perovskite materials have shown great promise for use in next-generation solar cells, light-emitting devices (LEDs), sensors, and other applications, but their instability remains a critical limitation.

Researchers at UC Santa Cruz attacked this problem by focusing on perovskite nanocrystals, in which the instability problems are magnified by the large surface area of the particles relative to their volume. Atoms on the surface are vulnerable to reactions that can degrade the material, so molecules that bind to the surface--called surface ligands or capping ligands--are used both to stabilize perovskite nanocrystals and to control their properties.

In a paper published June 13 in Angewandte Chemie, the UCSC researchers reported the results of experiments using unique branched ligands to synthesize perovskite nanocrystals with greatly improved stability and uniform particle size.

"This new strategy to stabilize organometal-halide perovskites is an important step in the right direction," said corresponding author Jin Zhang, professor of chemistry and biochemistry at UC Santa Cruz. "Our hope is that this could be used not only for perovskite nanocrystals but also for bulk materials and thin films used in applications such as photovoltaics."

Zhang's team tested the effects of different types of capping ligands on the stability of perovskite nanocrystals. Conventional perovskite nanocrystals capped with ligands consisting of long straight-chain amines show poor stability in solvents such as water and alcohol. Zhang's lab identified unique branched molecules that proved much more effective as capping ligands.

According to Zhang, the branching structure of the ligands protects the surface of the nanocrystals by occupying more space than straight-chain molecules, creating a mechanical barrier through an effect known as steric hindrance. "The branching molecules are more cone-shaped, which increases steric hindrance and makes it harder for the solvent to access the surface of the nanocrystals," he said.

The researchers were able to control the size of the nanocrystals by adjusting the amount of branched capping ligands used during synthesis. They could obtain uniform perovskite nanocrystals in sizes ranging from 2.5 to 100 nanometers, with high photoluminescence quantum yield, a measure of fluorescence that is critical to the performance of perovskites in a variety of applications.

Zhang's lab is exploring the use of perovskite nanocrystals in sensors to detect specific chemicals. He is also working with UC Santa Cruz physicist Sue Carter on the use of perovskite thin films in photovoltaic cells for solar energy applications.


Story Source:

Materials provided by University of California - Santa Cruz. Original written by Tim Stephens. Note: Content may be edited for style and length.


Journal Reference:

  1. Binbin Luo, Ying-Chih Pu, Sarah A. Lindley, Yi Yang, Liqiang Lu, Yat Li, Xueming Li, Jin Z. Zhang. Organolead Halide Perovskite Nanocrystals: Branched Capping Ligands Control Crystal Size and Stability. Angewandte Chemie International Edition, 2016; DOI: 10.1002/anie.201602236

Cite This Page:

University of California - Santa Cruz. "Novel capping strategy improves stability of perovskite nanocrystals: Study addresses instability issues with organometal-halide perovskites, a promising class of materials for solar cells, LEDs, and other applications." ScienceDaily. ScienceDaily, 13 June 2016. <www.sciencedaily.com/releases/2016/06/160613144653.htm>.
University of California - Santa Cruz. (2016, June 13). Novel capping strategy improves stability of perovskite nanocrystals: Study addresses instability issues with organometal-halide perovskites, a promising class of materials for solar cells, LEDs, and other applications. ScienceDaily. Retrieved May 24, 2017 from www.sciencedaily.com/releases/2016/06/160613144653.htm
University of California - Santa Cruz. "Novel capping strategy improves stability of perovskite nanocrystals: Study addresses instability issues with organometal-halide perovskites, a promising class of materials for solar cells, LEDs, and other applications." ScienceDaily. www.sciencedaily.com/releases/2016/06/160613144653.htm (accessed May 24, 2017).

RELATED STORIES