New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Introduction to quantum mechanics

Quantum mechanics is a fundamental branch of physics that describes the behavior of matter and energy at the smallest scales—typically at the level of atoms, electrons, photons, and subatomic particles. Unlike classical physics, which accurately explains the motion of macroscopic objects, quantum mechanics reveals a world governed by probabilities, wave-particle duality, and quantized energy states. It provides the theoretical framework for understanding the physical properties of particles and forces at the microscopic level and underpins much of modern technology and scientific discovery.

At the heart of quantum mechanics is the idea that particles can behave like waves, and waves can exhibit particle-like properties. Electrons, for example, do not orbit the nucleus in fixed paths as once thought, but exist in regions of probability known as orbitals. The behavior of these particles is governed by mathematical functions called wavefunctions, which describe the likelihood of finding a particle in a particular location. The famous Heisenberg uncertainty principle states that one cannot simultaneously know both the exact position and momentum of a particle, highlighting the intrinsic limits of measurement at quantum scales.

One of the most counterintuitive features of quantum mechanics is superposition, where particles can exist in multiple states at once until measured. Another is entanglement, a phenomenon where two or more particles become correlated in such a way that the state of one instantly influences the state of the other, regardless of the distance between them. These effects have been experimentally confirmed and challenge our classical understanding of causality and locality.

Quantum mechanics has led to revolutionary advances in science and technology. It forms the basis of quantum chemistry, solid-state physics, and nuclear physics, and it explains the structure of atoms and molecules, the behavior of semiconductors, and the functioning of lasers. Technologies such as MRI machines, transistors, and atomic clocks all rely on quantum principles. More recently, the field has given rise to quantum computing and quantum cryptography, which promise to transform computing power and information security.

Though its predictions are mathematically precise and experimentally verified, quantum mechanics continues to raise profound philosophical questions about the nature of reality, observation, and determinism. Despite its abstract and often unintuitive concepts, it remains one of the most successful and predictive theories in all of science, offering a powerful lens through which to understand the universe at its most fundamental level.

Related Stories
 


Matter & Energy News

September 12, 2025

For the first time, scientists have observed electrons in graphene behaving like a nearly perfect quantum fluid, challenging a long-standing puzzle in physics. By creating ultra-clean samples, the team at IISc uncovered a surprising decoupling of ...
Physicists have unveiled a new superconducting detector sensitive enough to hunt dark matter particles smaller than electrons. By capturing faint photon signals, the device pushes the search into uncharted ...
Researchers in Germany and Australia have created a simple but powerful tool to detect nanoplastics—tiny, invisible particles that can slip through skin and even the blood-brain barrier. Using an "optical sieve" test strip viewed under a regular ...
Artificial intelligence is consuming enormous amounts of energy, but researchers at the University of Florida have built a chip that could change everything by using light instead of electricity for a core AI function. By etching microscopic lenses ...
Scientists at the University of Tokyo have unveiled “gold quantum needles,” a newly discovered nanocluster structure formed under unusual synthesis conditions. Unlike typical spherical clusters, these elongated, pencil-shaped formations display ...
Scientists have created a transparent solar coating that turns ordinary windows into clean energy generators without affecting clarity. Using cholesteric liquid crystal layers, the coating redirects polarized sunlight to the window edges where solar ...
A hidden quantum geometry that distorts electron paths has finally been observed in real materials. This “quantum metric,” once thought purely theoretical, may revolutionize electronics, superconductivity, and ultrafast ...
A Japanese research team successfully harnessed E. coli to produce PDCA, a strong, biodegradable plastic alternative. Their method avoids toxic byproducts and achieves record production levels, overcoming key roadblocks with creative ...
Scientists at Northwestern University have developed a groundbreaking nickel-based catalyst that could transform the way the world recycles plastic. Instead of requiring tedious sorting, the catalyst selectively breaks down stubborn polyolefin ...
Scientists in Japan have uncovered a strange new behavior in “heavy” electrons — particles that act as if they carry far more mass than usual. These electrons were found to be entangled, sharing a deep quantum link, and doing so in ways tied ...
Quantum scientists in Innsbruck have taken a major leap toward building the internet of the future. Using a string of calcium ions and finely tuned lasers, they created quantum nodes capable of generating streams of entangled photons with 92% ...
Rice University physicists confirmed that flat electronic bands in kagome superconductors aren’t just theoretical, they actively shape superconductivity and magnetism. This breakthrough could guide the design of next-generation quantum materials ...

Latest Headlines

updated 12:56 pm ET