New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Introduction to quantum mechanics

Quantum mechanics is a fundamental branch of physics that describes the behavior of matter and energy at the smallest scales—typically at the level of atoms, electrons, photons, and subatomic particles. Unlike classical physics, which accurately explains the motion of macroscopic objects, quantum mechanics reveals a world governed by probabilities, wave-particle duality, and quantized energy states. It provides the theoretical framework for understanding the physical properties of particles and forces at the microscopic level and underpins much of modern technology and scientific discovery.

At the heart of quantum mechanics is the idea that particles can behave like waves, and waves can exhibit particle-like properties. Electrons, for example, do not orbit the nucleus in fixed paths as once thought, but exist in regions of probability known as orbitals. The behavior of these particles is governed by mathematical functions called wavefunctions, which describe the likelihood of finding a particle in a particular location. The famous Heisenberg uncertainty principle states that one cannot simultaneously know both the exact position and momentum of a particle, highlighting the intrinsic limits of measurement at quantum scales.

One of the most counterintuitive features of quantum mechanics is superposition, where particles can exist in multiple states at once until measured. Another is entanglement, a phenomenon where two or more particles become correlated in such a way that the state of one instantly influences the state of the other, regardless of the distance between them. These effects have been experimentally confirmed and challenge our classical understanding of causality and locality.

Quantum mechanics has led to revolutionary advances in science and technology. It forms the basis of quantum chemistry, solid-state physics, and nuclear physics, and it explains the structure of atoms and molecules, the behavior of semiconductors, and the functioning of lasers. Technologies such as MRI machines, transistors, and atomic clocks all rely on quantum principles. More recently, the field has given rise to quantum computing and quantum cryptography, which promise to transform computing power and information security.

Though its predictions are mathematically precise and experimentally verified, quantum mechanics continues to raise profound philosophical questions about the nature of reality, observation, and determinism. Despite its abstract and often unintuitive concepts, it remains one of the most successful and predictive theories in all of science, offering a powerful lens through which to understand the universe at its most fundamental level.

Related Stories
 


Matter & Energy News

August 24, 2025

Ripple bugs’ fan-like legs inspired engineers to build the Rhagobot, a tiny robot with self-morphing fans. By mimicking these insects’ passive, ultra-fast movements, the robot gains speed, control, and endurance without extra ...
Scientists have developed a groundbreaking cryo-optical microscopy technique that freezes living cells mid-action, capturing ultra-detailed snapshots of fast biological processes. By rapidly immobilizing cells at precise moments, researchers can ...
By using quantum dots and smart encryption protocols, researchers overcame a 40-year barrier in quantum communication, showing that secure networks don’t need perfect hardware to outperform today’s best ...
Researchers at Zhejiang University have found a way to stop performance-killing Auger recombination in perovskite lasers, using a clever additive during processing. Their method produced a record-breaking laser with unprecedented efficiency, ...
Scientists may have uncovered the missing piece of quantum computing by reviving a particle once dismissed as useless. This particle, called the neglecton, could give fragile quantum systems the full power they need by working alongside Ising ...
Researchers developed a crystal that inhales and exhales oxygen like lungs. It stays stable under real-world conditions and can be reused many times, making it ideal for energy and electronic applications. This innovation could reshape technologies ...
Lithium battery recycling offers a powerful solution to rising demand, with discarded batteries still holding most of their valuable materials. Compared to mining, recycling slashes emissions and resource use while unlocking major economic ...
Researchers have unveiled a new quantum material that could make quantum computers much more stable by using magnetism to protect delicate qubits from environmental disturbances. Unlike traditional approaches that rely on rare spin-orbit ...
Rice University scientists have discovered a way to make tiny vibrations, called phonons, interfere with each other more strongly than ever before. Using a special sandwich of silver, graphene, and silicon carbide, they created a record-breaking ...
Researchers have found a clever way to make quantum dots, tiny light-emitting crystals, produce streams of perfectly controlled photons without relying on expensive, complex electronics. By using a precise sequence of laser pulses, the team can ...
Scientists have developed a lightning-fast AI tool called HEAT-ML that can spot hidden “safe zones” inside a fusion reactor where parts are protected from blistering plasma heat. Finding these areas, known as magnetic shadows, is key to keeping ...
Scientists have found that microscopic gold clusters can act like the world’s most accurate quantum systems, while being far easier to scale up. With tunable spin properties and mass production potential, they could transform quantum computing and ...

Latest Headlines

updated 12:56 pm ET