New! Sign up for our free email newsletter.
Science News
from research organizations

New insight into Frank-Starling mechanism

November 7, 2016
University of Salford
An international team of scientists has provided new insight into the Frank-Starling mechanism, a fundamental aspect of human heart function.

An international team of scientists have provided new insight into the Frank-Starling mechanism; a fundamental aspect of human heart function.

The Frank-Starling mechanism described more than a century ago by Otto Frank and Ernest Starling -- allows the volume of blood entering the heart to precisely match that ejected, because if a larger volume should enter the walls of the heart chambers stretch accordingly.

The stretch causes the heart muscle to contract more forcefully during contraction, increasing the volume of blood ejected; an equilibrium essential for normal heart function.

Biological scientists based in London, Manchester, Salford and Germany have published new data in the scientific journal Nature Communications to explain the precision of this process at a molecular level.

They found that during stretch a group of oxidants called reactive oxygen species (ROS) are produced in the heart muscle, and these activate a muscle contraction protein called activate protein kinase G (PKG). In turn PKG kickstarts molecular movement to change the force of muscle contraction.

The team discovered that one such process was the molecular modification of a cellular protein called SERCA.

Dr David Greensmith, of the biomedical Research centre at the University of Salford, said: "Heart muscle is formed by billions of cells which simultaneously shorten to produce contraction. This shortening is triggered by a rise of calcium which is dependent on SERCA.

"Anything which alters SERCA activity alters the magnitude of calcium rise and so force of contraction."

The molecular modification of SERCA observed in laboratory tests was, they found, the likely cause of altered SERCA activity and thereby provided the process by which the Frank-Starling mechanism is fine-tuned.

Story Source:

Materials provided by University of Salford. Note: Content may be edited for style and length.

Journal Reference:

  1. Jenna Scotcher, Oleksandra Prysyazhna, Andrii Boguslavskyi, Kornel Kistamas, Natasha Hadgraft, Eva D. Martin, Jenny Worthington, Olena Rudyk, Pedro Rodriguez Cutillas, Friederike Cuello, Michael J. Shattock, Michael S. Marber, Maria R. Conte, Adam Greenstein, David J. Greensmith, Luigi Venetucci, John F. Timms, Philip Eaton. Disulfide-activated protein kinase G Iα regulates cardiac diastolic relaxation and fine-tunes the Frank–Starling response. Nature Communications, 2016; 7: 13187 DOI: 10.1038/ncomms13187

Cite This Page:

University of Salford. "New insight into Frank-Starling mechanism." ScienceDaily. ScienceDaily, 7 November 2016. <>.
University of Salford. (2016, November 7). New insight into Frank-Starling mechanism. ScienceDaily. Retrieved April 20, 2024 from
University of Salford. "New insight into Frank-Starling mechanism." ScienceDaily. (accessed April 20, 2024).

Explore More

from ScienceDaily