Science News
from research organizations

From abundant hydrocarbons to rare spin liquids

Date:
April 24, 2017
Source:
Tohoku University
Summary:
Fuel such as gasoline is made up of hydrocarbons -- a family of molecules consisting entirely of carbon and hydrogen. Pigment and dye, coal and tar are made up of hydrocarbons too. These common, abundant materials, sometimes even associated with waste, are not often thought of as being electronically or magnetically interesting. But now scientists have made a significant find.
Share:
FULL STORY

Differences between ordinary magnets and spin liquids. At high temperatures, the spins -- the little compasses of each unpaired electron in the materials -- fluctuate randomly between arbitrary orientations in both cases. (Left) In conventional magnetic states, the spins order statically aligning relative to each other either in parallel or antiparallel fashion below some characteristic temperature. (Right) In a quantum spin liquid, the spins never order at any temperature, no matter how low it is - they continue to fluctuate rapidly without symmetry breaking even at absolute zero temperature (- 273 °C).
Credit: Kosmas Prassides

Fuel such as petrol is made up of hydrocarbons -- a family of molecules consisting entirely of carbon and hydrogen. Pigment and dye, coal and tar are made up of hydrocarbons too.

These common, abundant materials, sometimes even associated with waste, are not often thought of as being electronically or magnetically interesting. But an international research team, led by Professor Kosmas Prassides of Tohoku University in Japan and Professor Matthew J. Rosseinsky of the University of Liverpool in the U.K., has made a significant find.

The team recently discovered how to take such hydrocarbon molecular components, dress them with electrons, each of which carries a small compass -- an unpaired spin -- and pack them together like cookies in a box to create a quantum spin liquid -- a long-sought hypothetical state of matter.

It was in 1973 that the existence of quantum spin liquids was first theoretically proposed. In conventional magnets, the motion of the electron spins -- the tiny magnets -- freezes on cooling as they align parallel or antiparallel to each other. In contrast, the spins in a quantum spin liquid never stop fluctuating, randomly and strongly, even at the lowest temperature of absolute zero. Each individual spin points simultaneously along an infinite number of directions and is highly entangled with other spins, even those far away. As such, this sea of electron spins is predicted to be host to many exotic phenomena of both fundamental and technological interest.

However, experimental realization of this unique fully-entangled state of matter has remained to date unfulfilled. Despite a four-decade-long search, there are very few quantum spin liquid candidates. Current options include certain copper inorganic minerals and some organic salts, which contain rare, heavy or toxic elements.

In results published in two back-to-back papers on April 24 in the British scientific journal Nature Chemistry, the team came up with the new chemistry needed to make high-purity crystalline materials from the reaction of polyaromatic hydrocarbons  with alkali metals for the first time.

Materials obtained from polyaromatic hydrocarbons (molecules with many aromatic rings) were proposed in the past as candidates of new superconductors -- materials with no electrical resistance and able to carry electricity without losing energy -- devoid of toxic or rare elements. However, destruction of the molecular components in the synthetic treatments employed had inhibited any progress in this field.

"Removing the existing synthetic roadblock has led to very exciting developments," says Professor Kosmas Prassides. "We have already discovered that some of the structures of the new materials -- made entirely of carbon and hydrogen, the simplest possible combination -- show unprecedented magnetic properties -- spin liquid behavior  -- with potential applications in superconductivity and quantum computing."

"It took us many years of work to achieve our breakthrough," adds Professor Matthew Rosseinsky. "But in the end, we succeeded in developing not one, but two complementary chemistry routes, which open the way to a rich variety of new materials with as-yet unknown properties."


Story Source:

Materials provided by Tohoku University. Note: Content may be edited for style and length.


Journal References:

  1. Yasuhiro Takabayashi, Melita Menelaou, Hiroyuki Tamura, Nayuta Takemori, Takashi Koretsune, Aleš Štefančič, Gyöngyi Klupp, A. Johan C. Buurma, Yusuke Nomura, Ryotaro Arita, Denis Arčon, Matthew J. Rosseinsky, Kosmas Prassides. π-electron S = ½ quantum spin-liquid state in an ionic polyaromatic hydrocarbon. Nature Chemistry, 2017; DOI: 10.1038/NCHEM.2764
  2. F. Denis Romero, M. J. Pitcher, C. I. Hiley, G. F. S. Whitehead, S. Kar, A. Y. Ganin, D. Antypov, C. Collins, M. S. Dyer, G. Klupp, R. H. Colman, K. Prassides, M. J. Rosseinsky. Redox-controlled potassium intercalation into two polyaromatic hydrocarbon solids. Nature Chemistry, 2017; DOI: 10.1038/NCHEM.2765

Cite This Page:

Tohoku University. "From abundant hydrocarbons to rare spin liquids." ScienceDaily. ScienceDaily, 24 April 2017. <www.sciencedaily.com/releases/2017/04/170424141255.htm>.
Tohoku University. (2017, April 24). From abundant hydrocarbons to rare spin liquids. ScienceDaily. Retrieved May 28, 2017 from www.sciencedaily.com/releases/2017/04/170424141255.htm
Tohoku University. "From abundant hydrocarbons to rare spin liquids." ScienceDaily. www.sciencedaily.com/releases/2017/04/170424141255.htm (accessed May 28, 2017).

RELATED STORIES