New! Sign up for our free email newsletter.
Science News
from research organizations

Direct image of a black hole expelling a powerful jet

Date:
April 26, 2023
Source:
ESO
Summary:
Astronomers have observed, in one image, the shadow of the black hole at the center of the galaxy Messier 87 (M87) and the powerful jet expelled from it. Thanks to this new image, astronomers can better understand how black holes can launch such energetic jets.
Share:
FULL STORY

For the first time, astronomers have observed, in the same image, the shadow of the black hole at the centre of the galaxy Messier 87 (M87) and the powerful jet expelled from it. The observations were done in 2018 with telescopes from the Global Millimetre VLBI Array (GMVA), the Atacama Large Millimeter/submillimeter Array (ALMA), of which ESO is a partner, and the Greenland Telescope (GLT). Thanks to this new image, astronomers can better understand how black holes can launch such energetic jets.

Most galaxies harbour a supermassive black hole at their centre. While black holes are known for engulfing matter in their immediate vicinity, they can also launch powerful jets of matter that extend beyond the galaxies that they live in. Understanding how black holes create such enormous jets has been a long standing problem in astronomy. "We know that jets are ejected from the region surrounding black holes," says Ru-Sen Lu from the Shanghai Astronomical Observatory in China, "but we still do not fully understand how this actually happens. To study this directly we need to observe the origin of the jet as close as possible to the black hole."

The new image published today shows precisely this for the first time: how the base of a jet connects with the matter swirling around a supermassive black hole. The target is the galaxy M87, located 55 million light-years away in our cosmic neighbourhood, and home to a black hole 6.5 billion times more massive than the Sun. Previous observations had managed to separately image the region close to the black hole and the jet, but this is the first time both features have been observed together. "This new image completes the picture by showing the region around the black hole and the jet at the same time," adds Jae-Young Kim from the Kyungpook National University in South Korea and the Max Planck Institute for Radio Astronomy in Germany.

The image was obtained with the GMVA, ALMA and the GLT, forming a network of radio-telescopes around the globe working together as a virtual Earth-sized telescope. Such a large network can discern very small details in the region around M87's black hole.

The new image shows the jet emerging near the black hole, as well as what scientists call the shadow of the black hole. As matter orbits the black hole, it heats up and emits light. The black hole bends and captures some of this light, creating a ring-like structure around the black hole as seen from Earth. The darkness at the centre of the ring is the black hole shadow, which was first imaged by the Event Horizon Telescope (EHT) in 2017. Both this new image and the EHT one combine data taken with several radio-telescopes worldwide, but the image released today shows radio light emitted at a longer wavelength than the EHT one: 3.5 mm instead of 1.3 mm. "At this wavelength, we can see how the jet emerges from the ring of emission around the central supermassive black hole," says Thomas Krichbaum of the Max Planck Institute for Radio Astronomy.

The size of the ring observed by the GMVA network is roughly 50% larger in comparison to the Event Horizon Telescope image. "To understand the physical origin of the bigger and thicker ring, we had to use computer simulations to test different scenarios," explains Keiichi Asada from the Academia Sinica in Taiwan. The results suggest the new image reveals more of the material that is falling towards the black hole than what could be observed with the EHT.

These new observations of M87's black hole were conducted in 2018 with the GMVA, which consists of 14 radio-telescopes in Europe and North America [1]. In addition, two other facilities were linked to the GMVA: the Greenland Telescope and ALMA, of which ESO is a partner. ALMA consists of 66 antennas in the Chilean Atacama desert, and it played a key role in these observations. The data collected by all these telescopes worldwide are combined using a technique called interferometry, which synchronises the signals taken by each individual facility. But to properly capture the actual shape of an astronomical object it's important that the telescopes are spread all over the Earth. The GMVA telescopes are mostly aligned East-to-West, so the addition of ALMA in the Southern hemisphere proved essential to capture this image of the jet and shadow of M87's black hole. "Thanks to ALMA's location and sensitivity, we could reveal the black hole shadow and see deeper into the emission of the jet at the same time," explains Lu.

Future observations with this network of telescopes will continue to unravel how supermassive black holes can launch powerful jets. "We plan to observe the region around the black hole at the centre of M87 at different radio wavelengths to further study the emission of the jet," says Eduardo Ros from the Max Planck Institute for Radio Astronomy. Such simultaneous observations would allow the team to disentangle the complicated processes that happen near the supermassive black hole. "The coming years will be exciting, as we will be able to learn more about what happens near one of the most mysterious regions in the Universe," concludes Ros.


Story Source:

Materials provided by ESO. Note: Content may be edited for style and length.


Journal Reference:

  1. Ru-Sen Lu, Keiichi Asada, Thomas P. Krichbaum, Jongho Park, Fumie Tazaki, Hung-Yi Pu, Masanori Nakamura, Andrei Lobanov, Kazuhiro Hada, Kazunori Akiyama, Jae-Young Kim, Ivan Marti-Vidal, José L. Gómez, Tomohisa Kawashima, Feng Yuan, Eduardo Ros, Walter Alef, Silke Britzen, Michael Bremer, Avery E. Broderick, Akihiro Doi, Gabriele Giovannini, Marcello Giroletti, Paul T. P. Ho, Mareki Honma, David H. Hughes, Makoto Inoue, Wu Jiang, Motoki Kino, Shoko Koyama, Michael Lindqvist, Jun Liu, Alan P. Marscher, Satoki Matsushita, Hiroshi Nagai, Helge Rottmann, Tuomas Savolainen, Karl-Friedrich Schuster, Zhi-Qiang Shen, Pablo de Vicente, R. Craig Walker, Hai Yang, J. Anton Zensus, Juan Carlos Algaba, Alexander Allardi, Uwe Bach, Ryan Berthold, Dan Bintley, Do-Young Byun, Carolina Casadio, Shu-Hao Chang, Chih-Cheng Chang, Song-Chu Chang, Chung-Chen Chen, Ming-Tang Chen, Ryan Chilson, Tim C. Chuter, John Conway, Geoffrey B. Crew, Jessica T. Dempsey, Sven Dornbusch, Aaron Faber, Per Friberg, Javier González García, Miguel Gómez Garrido, Chih-Chiang Han, Kuo-Chang Han, Yutaka Hasegawa, Ruben Herrero-Illana, Yau-De Huang, Chih-Wei L. Huang, Violette Impellizzeri, Homin Jiang, Hao Jinchi, Taehyun Jung, Juha Kallunki, Petri Kirves, Kimihiro Kimura, Jun Yi Koay, Patrick M. Koch, Carsten Kramer, Alex Kraus, Derek Kubo, Cheng-Yu Kuo, Chao-Te Li, Lupin Chun-Che Lin, Ching-Tang Liu, Kuan-Yu Liu, Wen-Ping Lo, Li-Ming Lu, Nicholas MacDonald, Pierre Martin-Cocher, Hugo Messias, Zheng Meyer-Zhao, Anthony Minter, Dhanya G. Nair, Hiroaki Nishioka, Timothy J. Norton, George Nystrom, Hideo Ogawa, Peter Oshiro, Nimesh A. Patel, Ue-Li Pen, Yurii Pidopryhora, Nicolas Pradel, Philippe A. Raffin, Ramprasad Rao, Ignacio Ruiz, Salvador Sanchez, Paul Shaw, William Snow, T. K. Sridharan, Ranjani Srinivasan, Belén Tercero, Pablo Torne, Efthalia Traianou, Jan Wagner, Craig Walther, Ta-Shun Wei, Jun Yang, Chen-Yu Yu. A ring-like accretion structure in M87 connecting its black hole and jet. Nature, 2023; 616 (7958): 686 DOI: 10.1038/s41586-023-05843-w

Cite This Page:

ESO. "Direct image of a black hole expelling a powerful jet." ScienceDaily. ScienceDaily, 26 April 2023. <www.sciencedaily.com/releases/2023/04/230426210530.htm>.
ESO. (2023, April 26). Direct image of a black hole expelling a powerful jet. ScienceDaily. Retrieved April 18, 2024 from www.sciencedaily.com/releases/2023/04/230426210530.htm
ESO. "Direct image of a black hole expelling a powerful jet." ScienceDaily. www.sciencedaily.com/releases/2023/04/230426210530.htm (accessed April 18, 2024).

Explore More

from ScienceDaily

RELATED STORIES