New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Physics

Physics is the science of matter and its motion—the science that deals with concepts such as force, energy, mass, and charge. As an experimental science, its goal is to understand the natural world.

In one form or another, physics is one of the oldest academic disciplines; through its modern subfield of astronomy, it may be the oldest of all. Sometimes synonymous with philosophy, chemistry and even certain branches of mathematics and biology during the last two millennia, physics emerged as a modern science in the 17th century and these disciplines are now generally distinct, although the boundaries remain difficult to define.

Advances in physics often translate to the technological sector, and sometimes influence the other sciences, as well as mathematics and philosophy. For example, advances in the understanding of electromagnetism have led to the widespread use of electrically driven devices (televisions, computers, home appliances etc.); advances in thermodynamics led to the development of motorized transport; and advances in mechanics led to the development of the calculus, quantum chemistry, and the use of instruments like the electron microscope in microbiology.

Today, physics is a broad and highly developed subject. Research is often divided into four subfields: condensed matter physics; atomic, molecular, and optical physics; high energy physics; and astronomy and astrophysics. Most physicists also specialize in either theoretical or experimental research, the former dealing with the development of new theories, and the latter dealing with the experimental testing of theories and the discovery of new phenomena. Despite important discoveries during the last four centuries, there are a number of open questions in physics, and many areas of active research.

Although physics encompasses a wide variety of phenomena, all competent physicists are familiar with the basic theories of classical mechanics, electromagnetism, relativity, thermodynamics, and quantum mechanics. Each of these theories has been tested in numerous experiments and proven to be an accurate model of nature within its domain of validity.

For example, classical mechanics correctly describes the motion of objects in everyday experience, but it breaks down at the atomic scale, where it is superseded by quantum mechanics, and at speeds approaching the speed of light, where relativistic effects become important. While these theories have long been well-understood, they continue to be areas of active research—for example, a remarkable aspect of classical mechanics known as chaos theory was developed in the 20th century, three centuries after the original formulation of mechanics by Isaac Newton (1642–1727).

Related Stories
 


Matter & Energy News

December 24, 2025

A new discovery shows that messy, stray light can be used to clean up quantum systems instead of disrupting them. University of Iowa researchers found that unwanted photons produced by lasers can be canceled out by carefully tuning the light itself. ...
Superconductors promise loss-free electricity, but most only work at extreme cold. Hydrogen-rich materials changed that—yet their inner workings remained hidden because they only exist under enormous pressure. Now, researchers have directly ...
Gravitational waves from black holes may soon reveal where dark matter is hiding. A new model shows how dark matter surrounding massive black holes leaves detectable fingerprints in the waves recorded by future space ...
Researchers in Sweden have unveiled a way to create high-performance electronic electrodes using nothing more than visible light and specially designed water-soluble monomers. This gentle, chemical-free approach lets conductive plastics form ...
Researchers at the University of Warsaw have unveiled a breakthrough method for detecting and precisely calibrating terahertz frequency combs using a quantum antenna made from Rydberg atoms. By combining atomic electrometry with a powerful ...
MOCHI uses microscopic, air-filled channels to stop heat in its tracks while remaining nearly crystal clear. If scaled up, it could transform windows into powerful energy savers and solar ...
Scientists developed a high-performance hydrogen-production catalyst using lignin, a common waste product from paper and biorefinery processes. The nickel–iron oxide nanoparticles embedded in carbon fibers deliver fast kinetics, long-term ...
SQUIRE aims to detect exotic spin-dependent interactions using quantum sensors deployed in space, where speed and environmental conditions vastly improve sensitivity. Orbiting sensors tap into ...
Scientists have discovered how to electrically power insulating nanoparticles using organic molecules that act like tiny antennas. These hybrids generate extremely pure near-infrared light, ideal for medical diagnostics and advanced communications. ...
Kyushu University scientists have achieved a major leap in fuel cell technology by enabling efficient proton transport at just 300°C. Their scandium-doped oxide materials create a wide, soft pathway that lets protons move rapidly without clogging ...
Researchers engineered a strained germanium layer on silicon that allows charge to move faster than in any silicon-compatible material to date. This record mobility could lead to chips that run cooler, faster, and with dramatically lower energy ...
Researchers have discovered a new way to grow graphene that deliberately adds structural defects to enhance its usefulness in electronics, sensors, catalysts, and more. Using a specially shaped molecule called azupyrene, scientists can produce ...

Latest Headlines

updated 12:56 pm ET