New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Quantum computer

A quantum computer is any device for computation that makes direct use of distinctively quantum mechanical phenomena, such as superposition and entanglement, to perform operations on data. In a classical (or conventional) computer, information is stored as bits; in a quantum computer, it is stored as qubits (quantum bits). The basic principle of quantum computation is that the quantum properties can be used to represent and structure data, and that quantum mechanisms can be devised and built to perform operations with this data.

Although quantum computing is still in its infancy, experiments have been carried out in which quantum computational operations were executed on a very small number of qubits. Research in both theoretical and practical areas continues at a frantic pace, and many national government and military funding agencies support quantum computing research to develop quantum computers for both civilian and national security purposes, such as cryptanalysis.

If large-scale quantum computers can be built, they will be able to solve certain problems exponentially faster than any of our current classical computers (for example Shor's algorithm). Quantum computers are different from other computers such as DNA computers and traditional computers based on transistors. Some computing architectures such as optical computers may use classical superposition of electromagnetic waves, but without some specifically quantum mechanical resources such as entanglement, they have less potential for computational speed-up than quantum computers.

The power of quantum computers

Integer factorization is believed to be computationally infeasible with an ordinary computer for large integers that are the product of only a few prime numbers (e.g., products of two 300-digit primes). By comparison, a quantum computer could solve this problem more efficiently than a classical computer using Shor's algorithm to find its factors. This ability would allow a quantum computer to "break" many of the cryptographic systems in use today, in the sense that there would be a polynomial time (in the number of bits of the integer) algorithm for solving the problem. In particular, most of the popular public key ciphers are based on the difficulty of factoring integers, including forms of RSA.

These are used to protect secure Web pages, encrypted email, and many other types of data. Breaking these would have significant ramifications for electronic privacy and security. The only way to increase the security of an algorithm like RSA would be to increase the key size and hope that an adversary does not have the resources to build and use a powerful enough quantum computer. It seems plausible that it will always be possible to build classical computers that have more bits than the number of qubits in the largest quantum computer.

Related Stories
 


Computers & Math News

September 19, 2025

Astronomers have long relied on supercomputers to simulate the immense structure of the Universe, but a new tool called Effort.jl is changing that. By mimicking the behavior of complex cosmological models, this emulator delivers results with the ...
Scientists at Michigan State University have discovered how to use ultrafast lasers to wiggle atoms in exotic materials, temporarily altering their electronic behavior. By combining cutting-edge microscopes with quantum simulations, they created a ...
Using laser light instead of traditional mechanics, researchers have built micro-gears that can spin, shift direction, and even power tiny machines. These breakthroughs could soon lead to revolutionary medical tools working at the scale of ...
A new AI model from NYU Abu Dhabi predicts solar wind days in advance with far greater accuracy than existing methods. By analyzing ultraviolet solar images, it could help protect satellites, navigation systems, and power grids from disruptive space ...
Scientists in Korea have engineered magnetic nanohelices that can control electron spin with extraordinary precision at room temperature. By combining structural chirality and magnetism, these nanoscale helices can filter spins without complex ...
Johns Hopkins scientists, working with global partners, have unveiled a new way to build microchips so small they’re invisible to the eye. By developing special metal-organic materials that interact with powerful beams of light, they’ve cracked ...
Quantum materials, defined by their photon-like electrons, are opening new frontiers in material science. Researchers have synthesized organic compounds that display a universal magnetic behavior tied to a distinctive feature in their band ...
Scientists have finally unlocked a way to identify the elusive W state of quantum entanglement, solving a decades-old problem and opening paths to quantum teleportation and advanced quantum ...
Physicists have achieved a breakthrough by using a 58-qubit quantum computer to create and observe a long-theorized but never-before-seen quantum phase of matter: a Floquet topologically ordered state. By harnessing rhythmic driving in these quantum ...
Artificial intelligence is consuming enormous amounts of energy, but researchers at the University of Florida have built a chip that could change everything by using light instead of electricity for a core AI function. By etching microscopic lenses ...
Like LEGO for the quantum age, researchers have created modular superconducting qubits that can be linked with high fidelity. This design allows reconfiguration, upgrades, and scalability, marking a big step toward fault-tolerant quantum ...
Artificial intelligence is reshaping law, ethics, and society at a speed that threatens fundamental human dignity. Dr. Maria Randazzo of Charles Darwin University warns that current regulation fails to protect rights such as privacy, autonomy, and ...

Latest Headlines

updated 12:56 pm ET