New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Newton's cradle

Newton's cradle or Newton's balls, named after Sir Isaac Newton is a device that demonstrates conservation of momentum and energy.

It is constructed from a series of pendulums (usually five in number) abutting one another. Each pendulum is attached to a frame by two strings of equal length angled away from each other. If these strings are not same in length, the balls would then be unbalanced. This string arrangement restricts the pendulums' movements to the same plane.

The behaviour of the pendulum follows from the conservation of momentum and kinetic energy only in the case of two pendula. Indeed, if there are r pendula there are also r unknown velocities to be calculated from the initial conditions. An additional condition for the observed outcome is that a shock wave has to propagate dispersion free through the chain.

The principle demonstrated by the device, the law of impacts between bodies, was first demonstrated by the French physicist, Abbé Mariotte in the 17th century. Sir Isaac Newton acknowledged Mariotte's work, among that of others, in hisPrincipia.

In pedagogic settings, a cradle device is sometimes used to present the concept of "action-reaction" (Newton's third law), with the words said to the cadence of the clacking pendulums as they execute a single cycle of swinging and clacking oscillation. This is not a very clear presentation of action-reaction. In fact, the conservation laws can be easily derived from Newton's second and third laws.

Related Stories
 


Matter & Energy News

November 21, 2025

Scientists have directly measured the minuscule electron sharing that makes precious-metal catalysts so effective. Their new technique, IET, reveals how molecules bind and react on metal surfaces with unprecedented clarity. The insights promise ...
Researchers have discovered a way to store information using a rare class of materials called ferroaxials, which rely on swirling electric dipoles instead of magnetism or charge. These vortex-like states are naturally stable and resistant to outside ...
New research shows that light’s magnetic field is far more influential than scientists once believed. The team found that this magnetic component significantly affects how light rotates as it passes through certain materials. Their work challenges ...
Operating a new device named the Fusion Z-pinch Experiment 3, or FuZE-3, Zap Energy has now achieved plasmas with electron pressures as high as 830 megapascals (MPa), or 1.6 gigapascals (GPa) total, comparable to the pressures found deep below ...
A nationwide analysis has uncovered how sprawling fossil fuel infrastructure sits surprisingly close to millions of American homes. The research shows that 46.6 million people live within about a mile of wells, refineries, pipelines, storage sites, ...
MIT engineers have created an ultrasonic device that rapidly frees water from materials designed to absorb moisture from the air. Instead of waiting hours for heat to evaporate the trapped water, the system uses high-frequency vibrations to release ...
Researchers created scalable quantum circuits capable of simulating fundamental nuclear physics on more than 100 qubits. These circuits efficiently prepare complex initial states that classical computers cannot handle. The achievement demonstrates a ...
Researchers have found a way to make “dark excitons”—normally invisible quantum states of light—shine dramatically brighter by trapping them inside a tiny gold-nanotube optical cavity. This breakthrough boosts their emission 300,000-fold and ...
Scientists built a tiny clock from single-electron jumps to probe the true energy cost of quantum timekeeping. They discovered that reading the clock’s output requires vastly more energy than the clock uses to function. This measurement process ...
A new dual-light microscope lets researchers observe micro- and nanoscale activity inside living cells without using dyes. The system captures both detailed structures and tiny moving particles at ...
Dark matter may be invisible, but scientists are getting closer to understanding whether it follows the same rules as everything we can see. By comparing how galaxies move through cosmic gravity wells to the depth of those wells, researchers found ...
A new floating droplet electricity generator is redefining how rain can be harvested as a clean power source by using water itself as both structural support and an electrode. This nature-integrated design dramatically reduces weight and cost ...

Latest Headlines

updated 12:56 pm ET