Featured Research

from universities, journals, and other organizations

Cornell And Australian Scientists Clone The Gene Regulating Stem Growth In Pea Plants

Date:
September 6, 1997
Source:
Cornell University
Summary:
Plant scientists from Cornell University and the University of Tasmania, Australia, have successfully cloned one of history's first-studied genes -- the gene for stem growth in peas, according to a report in the latest issue of journal The Plant Cell, published Aug. 28.

ITHACA, N.Y. -- Plant scientists from Cornell University and the University of Tasmania, Australia, have successfully cloned one of history's first-studied genes -- the gene for stem growth in peas, according to a report in the latest issue of journal The Plant Cell, which was published today.

Related Articles


Cloning the gene gives scientists a new way to account for why some plants are tall and some are short.

"This is one of the most important genes in history as it illustrates the principles of genetics," said Peter Davies, Cornell professor of plant physiology, who worked on this research during a recent sabbatical in Australia.

In a monastery more than 130 years ago, in what is now the Czech Republic, Augustinian monk Gregor Mendel selected seven distinct characteristics of pea plants and traced how those characteristics were passed through generations. One of the principal traits on which he worked was stem length, the primary determinant of plant height.

The plant scientists working at the University of Tasmania, Hobart, Australia, isolated, cloned and obtained the DNA sequence of Mendel's historic tallness gene, and showed that it codes for gibberellin 3-beta-hydroxylase, a biosynthetic enzyme crucial to the division and elongation of the cells in the plant's stem.

Researchers Diane R. Lester, a molecular biologist; John J. Ross, a plant physiologist and James B. Reid, professor of genetics, all at the University of Tasmania, and Davies, will publish "Mendel's Stem Length Gene (Le) Encodes a Gibberellin 3b-Hydroxylase" in the August issue (Vol. 9, published August 26, 1997) of The Plant Cell, the journal of the American Society of Plant Physiologists.

In 1984, the Tasmanian group demonstrated that tallness in pea plants is regulated by an acid called gibberellin, or GA1, with promotes stem growth. Gibberellic acid had been discovered in the 1950s, but it was not until the early 1980s that the group connected it to stem height.

Now, the researchers have demonstrated that in the tall pea plants used by Mendel, the tallness gene codes for an enzyme that adds a hydroxyl (HO) group at a very particular location onto GA20, which is the is the immediate precursor of GA1.

In the dwarf plants there is a change of one base in the DNA sequence, which leads to a change of one amino acid in the resulting protein. In turn, this results in an enzyme that is still active in converting GA20 into GA1, but at 1/20th the rate. Therefore, dwarf peas are less efficient at synthesizing the gibberellic acid responsible for promoting stem growth. The plant becomes growth deficient.

Gregor Mendel (1822-1884), the father of genetics, conducted experiments on the hybridization of plants, particularly peas. The results of his research were included in two lectures delivered in 1865 to the Natural History Society of BrŸnn, Davies said. Subsequently, Mendel published a long paper in an 1866 issue of the Proceedings of the Natural History Society. Mendel's description of units of heredity, the formulation of the Laws of Segregation and Independent Assortment, and his coining of the concepts of dominant, recessive, and discrete factors -- later called genes -- remain the foundations of genetics today.

Little attention was drawn to Mendel's work in his own lifetime, Davies said. At the turn of the century, the Royal Horticultural Society of Great Britain commissioned an English translation from German of Mendel's work, and it was published in 1901. News of the findings spread. His work was highlighted at the International Conference on Plant Breeding and Hybridization, which met in New York City in 1902.

Davies said a review of the conference showed that many plant breeders had never heard of Mendel or his experiments. They were excited by the "new" findings and soon put theory into practice. From these humble beginnings, genetics and later molecular biology, evolved.

"Mendel's experiments are now included in every high school biology class," said Davies.


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University. "Cornell And Australian Scientists Clone The Gene Regulating Stem Growth In Pea Plants." ScienceDaily. ScienceDaily, 6 September 1997. <www.sciencedaily.com/releases/1997/09/970906095641.htm>.
Cornell University. (1997, September 6). Cornell And Australian Scientists Clone The Gene Regulating Stem Growth In Pea Plants. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/1997/09/970906095641.htm
Cornell University. "Cornell And Australian Scientists Clone The Gene Regulating Stem Growth In Pea Plants." ScienceDaily. www.sciencedaily.com/releases/1997/09/970906095641.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Tryptophan Isn't Making You Sleepy On Thanksgiving

Tryptophan Isn't Making You Sleepy On Thanksgiving

Newsy (Nov. 27, 2014) Tryptophan, a chemical found naturally in turkey meat, gets blamed for sleepiness after Thanksgiving meals. But science points to other culprits. Video provided by Newsy
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins