Featured Research

from universities, journals, and other organizations

HIV Subterfuge Revealed -- Virus Uses Devious Strategy To Undermine Immune System

Date:
October 29, 1997
Source:
National Institute Of Allergy And Infectious Diseases
Summary:
NIAID scientists have found that even when HIV does not enter a cell, proteins in the outer envelope of the virus can bind to a molecule called CCR5 on the cell's surface and initiate a biochemical cascade that sends a signal to the cell's interior. This signalling process may activate the cell, making it more vulnerable to HIV infection.

Researchers at the National Institute of Allergy and Infectious Diseases (NIAID) have discovered a devious strategy used by the human immunodeficiency virus (HIV) to undermine the immunesystem.

Related Articles


The scientists found that even when HIV does not enter a cell, proteins in the outer envelope of the virus can bind to a molecule called CCR5 on the cell's surface and initiate a biochemical cascade that sends a signal to the cell's interior. This signalling process mayactivate the cell, making it more vulnerable to HIV infection. It alsomay cause cells to migrate to sites of HIV replication, thereby increasing their vulnerability to infection. If the cell is already infected with HIV, activation may boost its production of the virus.

Drew Weissman, M.D., Ph.D., formerly of the NIAID Laboratory of Immunoregulation (LIR) and now an assistant professor at the University of Pennsylvania; Ronald L. Rabin, M.D., of the NIAID Laboratory of Clinical Investigation; Anthony S. Fauci, M.D., NIAID director and LIR chief; and their colleagues report the new findings inthe Oct. 30, 1997 issue of the journal Nature.

"These new data add to our understanding of the complex ways HIV causes disease," says Dr. Fauci. "It is a truly formidable foe with many tricks up its sleeve." Adds Dr. Weissman, "Our findings suggest that HIV, even without infecting a cell, canprofoundly influence the disease process by activating cells andinfluencing their movement and aggregation."

HIV generally requires two receptors to enter a target cell: CD4, and either CCR5 or CXCR4, depending on the strain of virus. The strains of HIV most commonly seen early in HIV disease, known as macrophage-tropic (M-tropic) viruses, use CD4 and CCR5 for cellentry. Many strains of the simian immunodeficiency virus (SIV), acousin of HIV that infects non-human primates such as monkeys, also use these receptors for cellular entry.

As described in the Nature report, the researchers found that envelope proteins from four different M-tropic HIV strains and one M-tropic SIV strain induced a signal through CCR5 that caused cells to migrate in culture. In contrast, envelope proteins from other strains of the viruses, known as T-cell tropic (T-tropic) strains, did not causesignalling.

"HIV disease is characterized by persistent immune activation, and envelope protein-mediated signalling through CCR5 may contribute directly or indirectly to this heightened state of activation, with negative consequences for the HIV-infected person," Dr. Faucisays.

Not only are HIV replication and spread more efficient in activated cells, but chronic immune activation during HIV disease may result in a massive stimulation of a person's B cells, impairing the ability of these cells to make antibodies against other pathogens.

Chronic immune activation also can result in a form of cellular suicideknown as apoptosis, and in the increased production of signallingmolecules called cytokines that can themselves increase HIV replication.

Co-authors of Drs. Fauci, Weissman and Rabin include James Arthos, Ph.D., Andrea Rubbert, M.D., Mark Dybul, M.D., Ruth Swofford, Sundararajan Venkatesan, M.D., and Joshua M. Farber, M.D., all of NIAID.

NIAID is a component of the National Institutes of Health (NIH). NIAID conducts and supports research to prevent, diagnose and treat illnesses such as AIDS and other sexually transmitted diseases, malaria, tuberculosis, asthma and allergies. NIH is an agency of the U.S. Department of Health and Human Services.

###

Reference: Weissman D, et al. Macrophage-tropic HIV and SIVenvelope proteins induce a signal through the CCR5 chemokinereceptor. Nature 1997;389:981-5.

Press releases, fact sheets and other NIAID-related materials are available on the Internet via the NIAID home page at http://www.niaid.nih.gov.


Story Source:

The above story is based on materials provided by National Institute Of Allergy And Infectious Diseases. Note: Materials may be edited for content and length.


Cite This Page:

National Institute Of Allergy And Infectious Diseases. "HIV Subterfuge Revealed -- Virus Uses Devious Strategy To Undermine Immune System." ScienceDaily. ScienceDaily, 29 October 1997. <www.sciencedaily.com/releases/1997/10/971029140358.htm>.
National Institute Of Allergy And Infectious Diseases. (1997, October 29). HIV Subterfuge Revealed -- Virus Uses Devious Strategy To Undermine Immune System. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/1997/10/971029140358.htm
National Institute Of Allergy And Infectious Diseases. "HIV Subterfuge Revealed -- Virus Uses Devious Strategy To Undermine Immune System." ScienceDaily. www.sciencedaily.com/releases/1997/10/971029140358.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins