Featured Research

from universities, journals, and other organizations

Strongest El Niño In History Dampers '97 Hurricane Season; Colorado State's Gray Says Still Most Active Three-Year Period

Date:
December 2, 1997
Source:
Colorado State University
Summary:
Despite the strongest summer El Niño event on record, 1997 hurricane activity in the Atlantic Basin was 54 percent of the long-term average but was less than predicted by Colorado State University's noted team of hurricane forecasters.

FORT COLLINS -- Despite the strongest summer El Niño event on record, 1997 hurricane activity in the Atlantic Basin was 54 percent of the long-term average but was less than predicted by Colorado State University's noted team of hurricane forecasters.

Related Articles


The team, lead by Professor William Gray, issued a report Nov. 26 that outlined why the El Niño of 1997 flattened the team's August prediction of 11 named storms, six hurricanes and two intense hurricanes for the season. Instead, the Atlantic Basin saw seven named storms, three hurricanes and one intense hurricane during the season, which ends Nov. 30. On average, 9.3 tropical storms, 5.8 hurricanes and 2.2 intense hurricanes form annually.

Although the hurricane season was below average, Gray's statistics show that the period between 1995-1997 was still the busiest three-year period for hurricane activity on record. The three-year span generated 39 named storms, 23 hurricanes (13 of which were intense) and 116 hurricane days.

"We knew going into the hurricane season that this would be an extremely difficult year to forecast," Gray said. "The El Niño proved to be twice as strong as any other previous record El Niño event in history for this time of year. No one guessed that it would grow to be so intense. And yet, despite this very extreme weather event, we still saw hurricane activity--more than was to be expected."

El Niño is a weather phenomenon marked by warmer-than-normal water temperatures in the eastern Pacific Ocean off the coast of Peru and along the equator. This rise in ocean temperatures causes strong upper tropospheric winds to blow in a westerly direction from the Pacific Ocean to the tropical Atlantic Ocean. These winds typically act to shear off developing hurricanes.

Gray said that in other years with strong El Niño events, such as 1957, 1972 and 1982, waters warmed only 2 or 3 degrees centigrade above normal. But the El Niño of 1997 actually warmed waters 4 or 5 degrees centigrade above normal--nearly twice as much as the previous record El Niño of 1982-83. This rare and extreme rise in ocean temperatures helped produce even more intense westerly upper tropospheric winds in the Atlantic Basin, which caused strong wind shear and prevented most easterly waves from Africa from forming.

Gray and his team of researchers are investigating the possibility that the extreme El Niño this year may have been the result of a long period of warm water accumulating in the western Pacific, possibly left over from smaller El Niño events in 1991-1993. The team contends this kind of warm water build-up could only have produced the type of El Niño that emerged this year.

Despite El Niño's extreme influence over the Colorado State team's 1997 hurricane forecast, Gray points out that factors in the Atlantic favorable for hurricane activity were still enough to produce seven named storms this year. These factors included warmer sea surface temperatures in the north and tropical Atlantic and colder sea surface temperatures in the South Atlantic, as well as colder than normal air temperatures 54,000 feet above Singapore. Also present was the Quasi-Biennial Oscillation, equatorial stratospheric winds at 68,000-75,000 feet than tend to promote hurricane formation when they blow from the west--as they did this year.

And, as predicted in the team's August forecast, El Niño pushed many of the storms that did form in 1997 to higher latitudes--some of them closer to the United States. Of the seven named storms that formed in the Atlantic, six originated above 25 degrees north latitude, higher latitudes than hurricanes typically form. Gray attributes this to the fact that while El Niño produces strong upper-level westerly winds at lower latitudes that block African-origin storms, it also creates weaker upper-level westerly winds at higher latitudes that are less able to thwart hurricane development.

Using atmospheric models, Gray and his colleagues have shown that if the El Niño of 1997 had only been as intense as previous record El Niño events in 1957, 1972 and 1982, those positive factors for hurricane formation would have generated 10 named storms, six hurricanes and three intense hurricanes--virtually on target with the team's prediction.

"The 1997 El Niño was truly in a class by itself," Gray said. "But I don't think it will be around to influence the 1998 hurricane season to any significant degree."

The Colorado State team's historical data shows that nine out of the past 30 years have actually produced less hurricane activity than in 1997. Of the nine years that were less active, seven occurred during El Niño events. When Gray's team issues the first forecast for the 1998 season on Dec. 5, the statistical model will now include the extreme 1997 El Niño conditions.

The team's hurricane forecasts--issued in early December, April, June and August--do not predict landfall and apply only to the Atlantic Basin, which encompasses the Atlantic Ocean, Caribbean Sea and Gulf of Mexico.

In addition to Gray, the hurricane research team includes John Knaff, Paul Mielke and Kenneth Berry from Colorado State; and Chris Landsea, a Colorado State graduate and a researcher at NOAA's Hurricane Research Laboratory in Miami, Fla.


Story Source:

The above story is based on materials provided by Colorado State University. Note: Materials may be edited for content and length.


Cite This Page:

Colorado State University. "Strongest El Niño In History Dampers '97 Hurricane Season; Colorado State's Gray Says Still Most Active Three-Year Period." ScienceDaily. ScienceDaily, 2 December 1997. <www.sciencedaily.com/releases/1997/12/971202073207.htm>.
Colorado State University. (1997, December 2). Strongest El Niño In History Dampers '97 Hurricane Season; Colorado State's Gray Says Still Most Active Three-Year Period. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/1997/12/971202073207.htm
Colorado State University. "Strongest El Niño In History Dampers '97 Hurricane Season; Colorado State's Gray Says Still Most Active Three-Year Period." ScienceDaily. www.sciencedaily.com/releases/1997/12/971202073207.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Lava on Track to Hit Hawaii Market

Raw: Lava on Track to Hit Hawaii Market

AP (Dec. 19, 2014) — Lava from an active volcano on Hawaii's Big Island slowed slightly but stayed on track to hit a shopping center in the small town of Pahoa. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Arctic Warming Twice As Fast As Rest Of Planet

Arctic Warming Twice As Fast As Rest Of Planet

Newsy (Dec. 18, 2014) — The Arctic is warming twice as fast as the rest of the planet, thanks in part to something called feedback. Video provided by Newsy
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) — Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins