Featured Research

from universities, journals, and other organizations

Potential Solutions For Gulf Of Mexico’s “Dead Zone” Explored

Date:
June 19, 1998
Source:
Ohio State University
Summary:
Researchers are studying ways to control the rush of nitrogen and other chemicals that flow into the Mississippi River watershed each spring and ultimately turn more than 7,000 square miles of the Gulf of Mexico into a “dead zone.”

COLUMBUS, Ohio -- Researchers are studying ways to control the rush of nitrogen and other chemicals that flow into the Mississippi River watershed each spring and ultimately turn more than 7,000 square miles of the Gulf of Mexico into a “dead zone.”

Related Articles


Nitrogen and other nutrients cause hypoxia, or the depletion of oxygen in a body of water. Hypoxia in the Gulf stems from human activities in the Mississippi River watershed, which encompasses more than 40 percent of the United States. A federally-appointed task force is currently looking into ways to manage the hypoxia problem.

“The answers to controlling hypoxia essentially come down to using nature to take care of our problems while protecting its biodiversity,” said William Mitsch, professor of natural resources at Ohio State University. “These solutions embrace ecotechnology, which includes restoring or building wetlands and riparian buffer zones along waterways.”

Mitsch leads one of six task force committees currently studying the hypoxia problem in the Gulf of Mexico. His committee is responsible for developing ways to control the pollution that causes hypoxia in the Gulf. The group presented their preliminary results June 9 at an Ecological Society of America meeting in St. Louis.

“Hypoxia is the result of living in an over-fertilized society,” Mitsch said. “We fertilize the living daylights out of the Midwest.” Ecotechnology may be the answer.

“Ecotechnology establishes some degree of natural landscape between human activity and waterways,” Mitsch said. Riparian zones, belts of vegetation next to a waterway, and wetlands both serve as filtering systems. Each essentially “cleans” runoff water of fertilizer by-products.

Hypoxia happens when excess nutrients, such as nitrogen and phosphorus, accumulate in a body of water and cause algae to flourish into algal blooms. These blooms thrive on nitrates and phosphates and deplete the water of nearly all dissolved oxygen.

Dissolved oxygen content in the Gulf is normally 5 parts per million (ppm). Hypoxia occurs when this level dips to 2 ppm or lower. The lack of oxygen either forces aquatic life to relocate or kills it.

Hypoxia affects many coastal areas of the world, such as the Baltic Sea and Chesapeake Bay. It is also on the increase in shallow coastal areas such as the Gulf of Mexico, which means a reassessment of priorities is in order, Mitsch said.

“Hypoxia may be a standard of living issue,” he said. “If we decide not to cut back on our pesticides and fertilizers, we may not be able to solve the problem.” The main problem, he added, comes from farming. According to the U.S. Geological Survey, about 56 percent of the nitrogen entering the Gulf is from fertilizer runoff.

“It’s hard for a farmer in the Midwest to connect his activities to problems in the Gulf of Mexico,” Mitsch said, adding that the far-reaching Mississippi River watershed encompasses Midwestern farm fields.

Other potential solutions to the hypoxia problem include reducing the initial disposal of nutrients into waterways; increasing the ability of a watershed to assimilate nutrients; and changing the hydrology of the Mississippi Basin.

“Humans levied the river to make it behave, while the river used to have the ability to naturally flood over its banks and spread nutrients over the landscape,” Mitsch said. “When water naturally spills over the banks, it can drain through a riparian corridor and come back as cleaner ground water.

“It’s our job to assess how well these proposed ecotechnologies will work in dealing with the hypoxia problem,” Mitsch said. “It just makes ecological sense to try these kinds of things.”


Story Source:

The above story is based on materials provided by Ohio State University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University. "Potential Solutions For Gulf Of Mexico’s “Dead Zone” Explored." ScienceDaily. ScienceDaily, 19 June 1998. <www.sciencedaily.com/releases/1998/06/980619073227.htm>.
Ohio State University. (1998, June 19). Potential Solutions For Gulf Of Mexico’s “Dead Zone” Explored. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/1998/06/980619073227.htm
Ohio State University. "Potential Solutions For Gulf Of Mexico’s “Dead Zone” Explored." ScienceDaily. www.sciencedaily.com/releases/1998/06/980619073227.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com
3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) — A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins