Featured Research

from universities, journals, and other organizations

Fault Activity: Geologists Use "Nature's Grease"

Date:
October 28, 1998
Source:
University Of Michigan
Summary:
University of Michigan scientists have found a way to use gouge---soft, chalky material created in the contact zone between moving fault blocks---to date near-surface fault activity and learn more about the fault's current strength.

TORONTO---University of Michigan scientists have found a way to use gouge---soft, chalky material created in the contact zone between moving fault blocks---to date near-surface fault activity and learn more about the fault's current strength.

Related Articles


Although geologists have been able to determine the age of deep faults for more than a decade, establishing the absolute age of near-surface faults has been difficult, according to Ben van der Pluijm, U-M professor of geological sciences.

Fault activity tends to occur in cycles of a few million years of movement followed by long quiet periods, according to van der Pluijm. "It's important to know whether a fault has recently been active, for example, when it is located near a nuclear reactor or waste repository. It also is important to know how strong a fault is for earthquake risk assessment."

At a meeting of the Geological Society of America here today (Oct. 26), van der Pluijm presented data from his analysis of gouge deposits in major thrust faults in the southern Canadian Rockies near Banff. "Until now, we could only estimate the last date of activity on these faults, based on their location in sedimentary deposits, as somewhere between 60 million to 70 million years ago." van der Pluijm said. "Based on our new analysis, we now believe it occurred about 51 million years ago.

"Most geologists consider gouge to be grinding scum created in a mechanical process when rocks move past each other," van der Pluijm said. "We can show that 80 percent of gouge deposits are actually created by chemical reactions, rather than from rock grinding. The change involves a dehydration process and the transformation of original clays called smectite into other forms of clay called illite. These changes have significant mechanical and hydrologic consequences."

Clays are inherently weak, making it possible for a fault to move more easily. This is not necessarily a bad thing, if you live near one. "Weak faults generate a lot of small slippage motion, instead of one huge slip producing a catastrophic earthquake," he said. "In subduction zones and other major faults, gouge may work like vaseline between bricks, greasing the fault and making it easier for blocks to slide."

Because heat and pressure increases deeper beneath the Earth's surface, the chemistry involved when deep faults slip produces a completely different type of material than gouge, van der Pluijm added.

"The ability to date activity in near-surface faults will be important to nuclear regulatory commission administrators who need to know an area's long-term future stability before building a nuclear reactor or determining the site of a waste storage facility," he said. "It also will be useful to geologists looking for oil and gas deposits, who are concerned with fluid seals."

All van der Pluijm and his colleagues need to unlock the secrets stored in gouge is advanced X-ray equipment, sophisticated radiogenic dating technology and six months of painstaking processing time. They use X-ray analysis to determine the nature and orientation of sub-micron-sized particles in gouge. "If the grains are stacked up like playing cards, they slip easily. If they are bent and interlocked, the fault is much stronger," van der Pluijm said. To date fault activity, the scientists use argon isotopic dating technology to date grains of newly grown clays in gouge deposits.

During the summer of 1999, van der Pluijm and co-workers plan to analyze gouge deposits from California's San Andreas fault. The research is funded by the National Science Foundation and the American Chemical Society.

Collaborators include Peter Vrolijk, a research scientist at Exxon; Donald R. Peacor, U-M professor of geological sciences; and Chris M. Hall, U-M assistant research scientist.


Story Source:

The above story is based on materials provided by University Of Michigan. Note: Materials may be edited for content and length.


Cite This Page:

University Of Michigan. "Fault Activity: Geologists Use "Nature's Grease"." ScienceDaily. ScienceDaily, 28 October 1998. <www.sciencedaily.com/releases/1998/10/981028075634.htm>.
University Of Michigan. (1998, October 28). Fault Activity: Geologists Use "Nature's Grease". ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/1998/10/981028075634.htm
University Of Michigan. "Fault Activity: Geologists Use "Nature's Grease"." ScienceDaily. www.sciencedaily.com/releases/1998/10/981028075634.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com
3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) — A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins