Featured Research

from universities, journals, and other organizations

LSU Biochemist Makes Progress In Understanding Fat

Date:
January 19, 1999
Source:
Louisiana State University
Summary:
An LSU chemist and his colleague from the University of Minnesota have made some important discoveries about a common human protein that could eventually lead to treatments for both Type 2 diabetes and obesity.

BATON ROUGE -- An LSU chemist and his colleague from the University of Minnesota have made some important discoveries about a common human protein that could eventually lead to treatments for both Type 2 diabetes and obesity.

Related Articles


LSU biochemist Vince LiCata and his colleague David Bernlohr of the University of Minnesota have published their findings in the December issue of the scientific journal, Proteins: Structure, Function and Genetics. An image depicting their findings is featured on the journal's cover.

The image comes from calculations the two have performed on a family of proteins known as lipid-binding proteins. Lipid-binding proteins are relatively small molecules found in nearly every human tissue, often in great quantities. The figure shows the distribution of electronic charge on the surface of the proteins -- a significant discovery by LiCata and Bernlohr about how the molecules work.

The proteins bind fatty acids and other lipids processed by tissues and cells and have been directly implicated in the development of Type 2 diabetes. Because they interact with all the fats that enter the body, they are also a focus in the development of obesity.

"There are a number of mysteries surrounding these proteins," LiCata said. "First, they bind their fatty partners in a deep interior cavity, so it is unclear how other cellular components can tell what lipid is inside the protein, or even if there is a lipid inside the protein."

Cellular machinery uses the proteins to sort the different types of fat for distribution to different parts of the cell, and to carry the fat, which is insoluble in water, to its destination. Some genes, for instance, are turned on or off by fatty acids, and the lipid-binding proteins help get the fats into the nucleus where they can do their work.

"Another mystery involves the fact that nearly every tissue in the body has its own distinct lipid-binding protein, yet all of these different family members have very much the same three-dimensional structures."

Usually, it is the shape of a molecule that determines its function, but because the structures are almost identical, LiCata and Bernlohr asked what other information the proteins might hold besides their shapes.

What they found was that the proteins from different parts of the body have very different electronic surface patterns. Regions where a protein from fat tissue is positively charged will be negatively charged in a protein from liver tissue, even though the underlying three-dimensional shapes of these regions are nearly identical.

These different electronic charge patterns mean these proteins will perform very different tasks in different tissues, a fact previously not recognized because their nearly identical shapes fostered the belief that they would be performing the same tasks in every tissue.

In addition, LiCata and Bernlohr discovered that the proteins expand slightly when they sequester their lipid partners. Because the expansion is usually less than 3 percent, it was not previously detected, but to a cell, a 3 percent change in size would make an enormous difference, LiCata said.

The researchers' findings suggest solutions to a number of more subtle questions that surround these proteins, and LiCata said he plans to extend his calculations to finer levels of detail and perform direct experimental manipulations on the different lipid-binding proteins based on the findings from his calculations.


Story Source:

The above story is based on materials provided by Louisiana State University. Note: Materials may be edited for content and length.


Cite This Page:

Louisiana State University. "LSU Biochemist Makes Progress In Understanding Fat." ScienceDaily. ScienceDaily, 19 January 1999. <www.sciencedaily.com/releases/1999/01/990119075009.htm>.
Louisiana State University. (1999, January 19). LSU Biochemist Makes Progress In Understanding Fat. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/1999/01/990119075009.htm
Louisiana State University. "LSU Biochemist Makes Progress In Understanding Fat." ScienceDaily. www.sciencedaily.com/releases/1999/01/990119075009.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins