Featured Research

from universities, journals, and other organizations

LSU Biochemist Makes Progress In Understanding Fat

Date:
January 19, 1999
Source:
Louisiana State University
Summary:
An LSU chemist and his colleague from the University of Minnesota have made some important discoveries about a common human protein that could eventually lead to treatments for both Type 2 diabetes and obesity.

BATON ROUGE -- An LSU chemist and his colleague from the University of Minnesota have made some important discoveries about a common human protein that could eventually lead to treatments for both Type 2 diabetes and obesity.

Related Articles


LSU biochemist Vince LiCata and his colleague David Bernlohr of the University of Minnesota have published their findings in the December issue of the scientific journal, Proteins: Structure, Function and Genetics. An image depicting their findings is featured on the journal's cover.

The image comes from calculations the two have performed on a family of proteins known as lipid-binding proteins. Lipid-binding proteins are relatively small molecules found in nearly every human tissue, often in great quantities. The figure shows the distribution of electronic charge on the surface of the proteins -- a significant discovery by LiCata and Bernlohr about how the molecules work.

The proteins bind fatty acids and other lipids processed by tissues and cells and have been directly implicated in the development of Type 2 diabetes. Because they interact with all the fats that enter the body, they are also a focus in the development of obesity.

"There are a number of mysteries surrounding these proteins," LiCata said. "First, they bind their fatty partners in a deep interior cavity, so it is unclear how other cellular components can tell what lipid is inside the protein, or even if there is a lipid inside the protein."

Cellular machinery uses the proteins to sort the different types of fat for distribution to different parts of the cell, and to carry the fat, which is insoluble in water, to its destination. Some genes, for instance, are turned on or off by fatty acids, and the lipid-binding proteins help get the fats into the nucleus where they can do their work.

"Another mystery involves the fact that nearly every tissue in the body has its own distinct lipid-binding protein, yet all of these different family members have very much the same three-dimensional structures."

Usually, it is the shape of a molecule that determines its function, but because the structures are almost identical, LiCata and Bernlohr asked what other information the proteins might hold besides their shapes.

What they found was that the proteins from different parts of the body have very different electronic surface patterns. Regions where a protein from fat tissue is positively charged will be negatively charged in a protein from liver tissue, even though the underlying three-dimensional shapes of these regions are nearly identical.

These different electronic charge patterns mean these proteins will perform very different tasks in different tissues, a fact previously not recognized because their nearly identical shapes fostered the belief that they would be performing the same tasks in every tissue.

In addition, LiCata and Bernlohr discovered that the proteins expand slightly when they sequester their lipid partners. Because the expansion is usually less than 3 percent, it was not previously detected, but to a cell, a 3 percent change in size would make an enormous difference, LiCata said.

The researchers' findings suggest solutions to a number of more subtle questions that surround these proteins, and LiCata said he plans to extend his calculations to finer levels of detail and perform direct experimental manipulations on the different lipid-binding proteins based on the findings from his calculations.


Story Source:

The above story is based on materials provided by Louisiana State University. Note: Materials may be edited for content and length.


Cite This Page:

Louisiana State University. "LSU Biochemist Makes Progress In Understanding Fat." ScienceDaily. ScienceDaily, 19 January 1999. <www.sciencedaily.com/releases/1999/01/990119075009.htm>.
Louisiana State University. (1999, January 19). LSU Biochemist Makes Progress In Understanding Fat. ScienceDaily. Retrieved March 28, 2015 from www.sciencedaily.com/releases/1999/01/990119075009.htm
Louisiana State University. "LSU Biochemist Makes Progress In Understanding Fat." ScienceDaily. www.sciencedaily.com/releases/1999/01/990119075009.htm (accessed March 28, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, March 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) — In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com
What's Different About This Latest Ebola Vaccine

What's Different About This Latest Ebola Vaccine

Newsy (Mar. 26, 2015) — A whole virus Ebola vaccine has been shown to protect monkeys exposed to the virus. Here&apos;s what&apos;s different about this vaccine. Video provided by Newsy
Powered by NewsLook.com
HIV Outbreak Prompts Public Health Emergency In Indiana

HIV Outbreak Prompts Public Health Emergency In Indiana

Newsy (Mar. 26, 2015) — Indiana Gov. Mike Pence says he will bring additional state resources to help stop the epidemic. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins