Featured Research

from universities, journals, and other organizations

A Gulf Stream Collision: Cold Air, Warm Water

Date:
April 29, 1999
Source:
University Of Maine
Summary:
Every winter, masses of cold, dry arctic air slide south across the North American continent before encountering a steamy river of warmth from the sub-tropics, the Gulf Stream. The resulting collision tends to create some of New England’s most dramatic weather and is the subject of research by a University of Maine professor.

Every winter, masses of cold, dry arctic air slide south across the North American continent before encountering a steamy river of warmth from the sub-tropics, the Gulf Stream. The resulting collision tends to create some of New England’s most dramatic weather and is the subject of research by a University of Maine professor.

Huijie Xue, an assistant professor in the UMaine School of Marine Sciences, has received a $330,000 National Science Foundation grant to continue her studies of the interaction between the Gulf Stream and the atmosphere. The grant is titled Collaborative Research: Coupled Atmosphere-Ocean Model Study of Wintertime Air-Sea Interaction Off the East Coast of North America.

The project could help to improve weather forecasts, although that is not a direct goal of the research, says Xue.

Xue has published reports of her previous work on this topic in the Journal of Physical Oceanography. She began studying these phenomena during her years as a graduate student at Princeton University where she worked with researchers who created the Princeton Ocean Model, one of the world’s premier ocean circulation models. Later, as a post-doctoral researcher at the University of North Carolina, she worked with scientists who were applying that model to understand the Gulf Stream.

Scientists have long known that frequent and sometimes violent interactions between arctic air and the Gulf Stream produce storms. Indeed, the world’s largest transfer of heat from the ocean to the atmosphere has been measured over the Gulf Stream, Xue says.

"We all know there is a storm track along the northeast coast of the United States. What happens is that during the winter, when you have polar air coming from Canada – dry and very cold – when it hits the ocean, it generates a lot of heat and moisture flux," she explains. "The heat and moisture add fuel to the atmosphere cycling system and create very strong cyclonic development. That’s why we always see a low develop along the mid-Atlantic coast just south of New England. That’s the region where we find what is called an ‘explosive development cyclone.’"

"We know the structure of the Gulf Stream pretty well and why it meanders from north to south. In terms of its climatic role, there’s still a lot we don’t know. We know it carries heat northward, but how much and how it varies with time is poorly understood," she says.Most other research on interactions between the air and the ocean focus on huge areas such as the Pacific basin where periodic El Nino events are associated with significant shifts in weather patterns around the globe. Xue and her colleagues are the first scientists to apply air-sea modeling efforts to a mesoscale geographic area, a term which refers to areas ranging from a few to hundreds of square miles. For their purposes, they are using a mathematical model developed at the University of Oklahoma to study tornadoes.

Among the major hurdles Xue and her colleague face is a lack of direct weather observations over the open ocean. Two major scientific projects in the last decade have generated data on air and sea temperatures, humidity, wind speeds, cloud cover and other details, but modelers have an insatiable appetite for such information. To calibrate and improve their calculations, Xue and other scientists need a steady stream of reliable weather data over the Gulf Stream.

"When we have funding, we make extensive use of aircraft," says Xue. "There are a lot of sensors on board, and we also use cameras to take pictures of the sea state and the clouds."

During research cruises, scientists occasionally see water rising like chimneys into the clouds. "What you see are chimneys of steam rising up into the air. Most of the time, the boundary between the air and water is clear cut, but during those events, the water is exchanging rapidly. It’s very strange. The chimneys go from the ocean surface to the bottom of the cloud, and you see a lot of them," she explains.

In addition to her research, Xue teaches courses at UMaine on the use of mathematical models to understand the circulation of currents in the ocean. She is also conducting research on the circulation of water in Penobscot Bay and in the South China Sea with Chinese and other UMaine scientists.

Next Fall, Xue is planning an international meeting in Bar Harbor to discuss improvements to the state-of-the-art in ocean circulation modeling. The Sigma Coordinate Ocean Model Users Meeting, will be held at the Regency/Holiday Inn Resort Sept. 20-22.

More information about Xue’s Gulf Stream research is available via the Internet at http://athena.umeoce.maine.edu/GALE/GALE.htm.


Story Source:

The above story is based on materials provided by University Of Maine. Note: Materials may be edited for content and length.


Cite This Page:

University Of Maine. "A Gulf Stream Collision: Cold Air, Warm Water." ScienceDaily. ScienceDaily, 29 April 1999. <www.sciencedaily.com/releases/1999/04/990428171335.htm>.
University Of Maine. (1999, April 29). A Gulf Stream Collision: Cold Air, Warm Water. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/1999/04/990428171335.htm
University Of Maine. "A Gulf Stream Collision: Cold Air, Warm Water." ScienceDaily. www.sciencedaily.com/releases/1999/04/990428171335.htm (accessed July 31, 2014).

Share This




More Earth & Climate News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Visitors Feel Part of the Pack at Wolf Preserve

Visitors Feel Part of the Pack at Wolf Preserve

AP (July 31, 2014) Seacrest Wolf Preserve on the northern Florida panhandle allows more than 10,000 visitors each year to get up close and personal with Arctic and British Columbian Wolves. (July 31) Video provided by AP
Powered by NewsLook.com
Florida Panther Rebound Upsets Ranchers

Florida Panther Rebound Upsets Ranchers

AP (July 31, 2014) With Florida's panther population rebounding, some ranchers complain the protected predators are once again killing their calves. (July 31) Video provided by AP
Powered by NewsLook.com
Big Waves In Arctic Ocean Threaten Polar Ice

Big Waves In Arctic Ocean Threaten Polar Ice

Newsy (July 30, 2014) Big waves in parts of the Arctic Ocean are unprecedented, mainly because they used to be covered in ice. Video provided by Newsy
Powered by NewsLook.com
Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins