Featured Research

from universities, journals, and other organizations

NC State Scientist Devises New, More Rapid Gene Silencing Technique

Date:
June 1, 1999
Source:
North Carolina State University
Summary:
Crops with increased resistance to drought and disease, soybeans with more protein and vegetables with more vitamins are some of the potential benefits that may result from a new gene silencing technology developed at North Carolina State University.

Crops with increased resistance to drought and disease, soybeans with more protein and vegetables with more vitamins are some of the potential benefits that may result from a new gene silencing technology developed at North Carolina State University.

Related Articles


The technology, created by Dr. Dominique "Niki" Robertson, associate professor of botany, allows researchers to inhibit the expression of a selected gene in a plant and then study how the plant grows without it -- ultimately helping them identify what that gene's function is.

Robertson's method represents a huge improvement over existing gene silencing technologies because it allows for 100 percent silencing in as few as two to four weeks. Other methods provide only 1 percent to 10 percent silencing in three to six months.

The new technology also can be used to silence two genes at once. "Sometimes more than one gene controls a pathway or process," Robertson says. "By silencing multiple genes, we can determine if they act alone or in concert."

"There is so much we could potentially do by determining the function of genes. If, for instance, we (can identify) the genes that determine plant growth, we could get plants to go through another round of cell divisions and double the biomass, increasing the plant's food output," she says.

NC State has applied for a patent on Robertson's technique. Monsanto Co. has an option to the technology and is a principal sponsor of Robertson's ongoing research.

Using the technology, scientists insert fragments of a specific plant gene into a Gemini-type DNA virus, a class of viruses that attack plants. An intact plant is then inoculated with the virus through a process called microprojectile bombardment, which uses small particles of gold to insert the DNA into the plant. The virus then moves the gene through the plant from bottom to top. The presence of the extra gene fragment in the plant cells causes silencing of similar genes in the plant chromosomes by blocking their expression.

An advantage of the new method is that it allows scientists to use smaller gene fragments than ever before possible. Many plant genes are more than 1,000 bases long, making it impossible to insert the entire gene into the DNA virus. However, Robertson's process has been used successfully to silence genes in plants using DNA fragments as small as 100 bases long.

The process was first tested successfully on a gene known to be involved in the production of chlorophyll, which gives plants color. After being inoculated with the gene-carrying DNA virus, some of the test plants produced variegated leaves. One plant exhibited entirely white leaves in its upper growth.

Robertson also tested the process on a gene thought to be required for viral DNA replication in plants. Silencing that gene prevented viral infection in the test plant. "Now we know that the gene is needed for viral DNA replication," she says.

She hopes her research will lead to a better understanding of the Gemini-type DNA viruses that attack plants. For instance, the cassava, a staple food in much of Africa, is highly susceptible to a similar virus. The NC State process may help researchers develop a form of cassava that is resistant to the virus.

Robertson's research is part of an emerging new scientific field called functional genomics, in which scientists aim to learn how genes are expressed in plants and animals. Other genetics research, such as the Human Genome Project, is generating huge amounts of data about DNA sequencing, Robertson says, but it doesn't reveal what the functions of the mapped genes are. That's where functional genomics comes in.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Cite This Page:

North Carolina State University. "NC State Scientist Devises New, More Rapid Gene Silencing Technique." ScienceDaily. ScienceDaily, 1 June 1999. <www.sciencedaily.com/releases/1999/06/990601081521.htm>.
North Carolina State University. (1999, June 1). NC State Scientist Devises New, More Rapid Gene Silencing Technique. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/1999/06/990601081521.htm
North Carolina State University. "NC State Scientist Devises New, More Rapid Gene Silencing Technique." ScienceDaily. www.sciencedaily.com/releases/1999/06/990601081521.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins