Featured Research

from universities, journals, and other organizations

Satellite Data On Ocean Topography Provides Clues To Hurricane Intensity

Date:
October 20, 1999
Source:
University Of Colorado At Boulder
Summary:
Using data from remote sensing satellites, researchers at the University of Colorado at Boulder are investigating a key factor that can be used in predicting the extent of a hurricane's fury.

Using data from remote sensing satellites, researchers at the University of Colorado at Boulder are investigating a key factor that can be used in predicting the extent of a hurricane's fury.

A hurricane's passage over a warm ocean eddy or current has been linked to a marked intensification of hurricane winds. Researchers at the Colorado Center for Astrodynamics Research in CU-Boulder's College of Engineering and Applied Science have been analyzing the relationship between warm ocean features and hurricane intensification using altimeter data from the TOPEX/POSEIDON and ERS-2 Earth-orbiting satellites.

These remote sensing satellites, which use a technique that measures the travel time of a microwave pulse reflected off the ocean's surface, help to detect the location of warm eddies and currents in real time, and thus are the latest tool in use by hurricane forecasters.

Working with Gustavo Goni at the National Oceanic and Atmospheric Administration's Atlantic Oceanographic and Meteorological Laboratory, CCAR researchers under the direction of aerospace engineering professor George Born, are using the data to assist forecasters in predicting which storms are likely to hit coastal areas the hardest.

While the ability to forecast a hurricane's path is relatively advanced, predicting intensity and storm surge -- information that could help determine evacuation areas and other safety measures -- has lagged behind because of insufficient data.

A hurricane is born when the right atmospheric conditions are combined with sea surface temperatures exceeding 26 degrees C (79 degrees F), according to CCAR research assistant Suzanna Barth. Warm air rises off the surface of the water, creating an atmospheric low-pressure cell which, if near the equator, produces winds that bend poleward as a result of the earth's rotation.

When a hurricane is then driven by high-altitude winds on a path over other warm water features, the additional heat may cause the storm to intensify.

"Think of it as a steam engine -- the more heat that's put into it, the faster it's going to run," said associate research professor Robert Leben.

A CCAR analysis of altimeter data revealed that during September 1995, Hurricane Opal's winds increased from 75 miles per hour to 145 miles per hour in only nine hours after the hurricane crossed a warm eddy in the Gulf of Mexico.

Hurricane Floyd, also categorized as a Category 4 hurricane before it slammed into North Carolina in September 1999, crossed several warm water columns, building up power as it moved across the Atlantic.

NOAA/AOML and CCAR researchers extrapolate sea surface temperatures and the approximate thickness of warm water from daily maps of sea surface height obtained through altimetry to estimate the hurricane heat potential in the ocean. Higher sea levels are associated with warm ocean features, Goni said.

Effective even when clouds block infrared signals, satellite altimetry allows scientists to map sea surface height, geostrophic velocity, significant wave height and wind speed on all of the world's oceans in real time. When combined with sea surface temperature measurements from infrared radiometers, a complete picture of the ocean's hurricane heat potential can be derived.

###

The Colorado Center for Astrodynamics Research is a multidisciplinary research center involving faculty, staff and students from the departments of aerospace engineering sciences and electrical and computer engineering at CU-Boulder. Founded in 1985, CCAR's research program emphasizes astrodynamics, satellite meteorology, oceanography, geodesy and terrestrial vegetation studies.

More information about hurricanes and ocean altimetry may be found at http://www-ccar.colorado.edu/altimetry/applications/hurricanes or at http://www.aoml.noaa.gov/phod/cyclone/data/ .


Story Source:

The above story is based on materials provided by University Of Colorado At Boulder. Note: Materials may be edited for content and length.


Cite This Page:

University Of Colorado At Boulder. "Satellite Data On Ocean Topography Provides Clues To Hurricane Intensity." ScienceDaily. ScienceDaily, 20 October 1999. <www.sciencedaily.com/releases/1999/10/991020081157.htm>.
University Of Colorado At Boulder. (1999, October 20). Satellite Data On Ocean Topography Provides Clues To Hurricane Intensity. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/1999/10/991020081157.htm
University Of Colorado At Boulder. "Satellite Data On Ocean Topography Provides Clues To Hurricane Intensity." ScienceDaily. www.sciencedaily.com/releases/1999/10/991020081157.htm (accessed August 27, 2014).

Share This




More Earth & Climate News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Calif. Quake Underscores Need for Early Warning

Calif. Quake Underscores Need for Early Warning

AP (Aug. 26, 2014) Researchers at UC Berkeley are testing a prototype of an earthquake early warning system that California is pursuing years after places like Mexico and Japan already have them up and running. (August 26) Video provided by AP
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Brazil Tries Genetically Modified Mosquitoes to Fight Dengue

Brazil Tries Genetically Modified Mosquitoes to Fight Dengue

AFP (Aug. 25, 2014) A factory in the industrial state of Sao Paulo produces genetically modified mosquitoes to fight dengue, a deadly tropical disease more prevalent in Brazil than anywhere else in the world. Duration: 00:57 Video provided by AFP
Powered by NewsLook.com
Raw: Prime Minister at Japan Landslide Site

Raw: Prime Minister at Japan Landslide Site

AP (Aug. 25, 2014) Japanese Prime Minister Shinzo Abe visited Hiroshima on Monday as rescuers expanded their search for dozens still missing from landslides around the western Japanese city that killed at least 50 people. (Aug. 25) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins