Featured Research

from universities, journals, and other organizations

Building The Right Barrier Stops Spread Of Deadly Pollutants

Date:
March 27, 2000
Source:
Johns Hopkins University
Summary:
Engineers create model to help design safer, more cost-effective sub-surface barriers to water-borne pollutants.

Underground water, tainted with toxic chemicals, is on the move. How do you stop the contaminants from polluting nearby wells? One new method is to throw a barrier of iron filings in front of the deadly flow. In theory, as the water passes through this wall, the pollutants will react chemically with the iron, leaving only harmless compounds in the water.

This permeable reactive barrier technology, in use for less than a decade, promises to be a highly effective pollution control tool. But environmental engineers at The Johns Hopkins University have found that cleanup crews may be making crucial miscalculations in designing these pollution neutralizing walls. To correct this problem, researchers William A. Arnold and A. Lynn Roberts have prepared a new mathematical model that should lead to safer and more cost-effective barriers. They presented their findings Sunday, March 26, at the national meeting of the American Chemical Society in San Francisco.

Pollution cleanup barriers must be designed properly to keep cancer-causing chemicals away from drinking water supplies. Each project can cost more than $1 million, most of which pays for the materials. "If you build these barriers too thin, you won't get complete treatment of the contaminated water," Arnold explained. "But if you build them too thick, then you're using two or three times more iron than you need, and you're greatly increasing the cost of the cleanup. This also limits the number of sites where you can use this technology because it's difficult to place thick barriers in front of pollutants located at large depths."

While preparing his doctoral thesis at Johns Hopkins, Arnold studied the chemical reactions that take place when certain contaminants collide with iron filings. Roberts, an associate professor in the Johns Hopkins Department of Geography and Environmental Engineering, collaborated on the research as Arnold's thesis advisor.

The pair focused on chlorinated ethylenes, suspected cancer-causing chemicals commonly found in dry cleaning solvents and de-greasing solutions. Through improper disposal at military and industrial sites, these deadly chemicals have seeped into underground water supplies and begun to migrate. Robert Gillham of the University of Waterloo in Canada developed the permeable reactive barrier technology about nine years ago as a way to de-toxify such plumes before they contaminate nearby drinking water supplies. Generally, the process calls for digging a trench to the level of the contaminated water. Workers then pour in tons of iron filings to form a permeable wall, usually one to six feet thick, that should remove toxins as the water moves through it. This method is now being used in full-scale and pilot projects at more than two dozen groundwater contamination sites in the United States and other nations.

To study the effectiveness of this process, Arnold and Roberts set up lab experiments at Johns Hopkins that mimicked the chemical reactions taking place in the field, but at an accelerated rate. They discovered that chlorinated ethylene molecules must compete for access to a limited number of sites on the iron surfaces where reactions can take place. "So at higher concentrations of pollution, there is more of this competition, and the reaction occurs more slowly," said Arnold, who, after receiving his Ph.D. at Johns Hopkins, became an assistant professor of civil engineering at the University of Minnesota. "At lower concentrations, the reaction takes place more quickly."

He and Roberts developed a new mathematical model that incorporates such variations. "We found that it's crucial that you know the exact concentration of the pollution, and you must use the correct mathematical model when you calculate how wide to build these barriers," Arnold said. "Our new model requires a lot more experimental data, which means you have to do a lot more preliminary testing in the lab. But if we can design these barriers more accurately, they will operate more effectively and more economically."


Story Source:

The above story is based on materials provided by Johns Hopkins University. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins University. "Building The Right Barrier Stops Spread Of Deadly Pollutants." ScienceDaily. ScienceDaily, 27 March 2000. <www.sciencedaily.com/releases/2000/03/000325104026.htm>.
Johns Hopkins University. (2000, March 27). Building The Right Barrier Stops Spread Of Deadly Pollutants. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2000/03/000325104026.htm
Johns Hopkins University. "Building The Right Barrier Stops Spread Of Deadly Pollutants." ScienceDaily. www.sciencedaily.com/releases/2000/03/000325104026.htm (accessed September 16, 2014).

Share This



More Earth & Climate News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Researchers Explore Shipwrecks Off Calif. Coast

Researchers Explore Shipwrecks Off Calif. Coast

AP (Sep. 16, 2014) Federal researchers are exploring more than a dozen underwater sites where they believe ships sank in the treacherous waters west of San Francisco in the decades following the Gold Rush. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Conservationists Face Uphill PR Battle With New Shark Rules

Conservationists Face Uphill PR Battle With New Shark Rules

Newsy (Sep. 14, 2014) New conservation measures for shark fishing face an uphill PR battle in the fight to slow shark extinction. Video provided by Newsy
Powered by NewsLook.com
Pakistan's 'killer Mountain' Fails to Draw Tourists After Attack

Pakistan's 'killer Mountain' Fails to Draw Tourists After Attack

AFP (Sep. 12, 2014) In June 2013, 10 foreign mountaineers and their guide were murdered on Nanga Parbat, an iconic peak that stands at 8,126m tall in northern Pakisan. Duration: 02:34 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins