Featured Research

from universities, journals, and other organizations

Sandia Attenuation Technology May Help Resolve Arsenic Environmental Crisis In Bangladesh

Date:
April 20, 2000
Source:
Sandia National Laboratories
Summary:
Technology developed at the Department of Energy's Sandia National Laboratories to remove toxins from groundwater contaminated by nuclear waste may offer clues about how to resolve a catastrophic environmental crisis in Bangladesh where arsenic-polluted wells are slowly poisoning and killing hundreds of thousands of people.

ALBUQUERQUE, N.M. -- Technology developed at the Department of Energy's Sandia National Laboratories to remove toxins from groundwater contaminated by nuclear waste may offer clues about how to resolve a catastrophic environmental crisis in Bangladesh where arsenic-polluted wells are slowly poisoning and killing hundreds of thousands of people.

This spring Sandia geochemist Pat Brady will travel to Vienna to meet with scientists from the International Atomic Energy Agency (IAEA) and help them understand the origins of the arsenic in the Bangladeshi wells. The IAEA is one of several world organizations striving to put an end to the poisoning.

Brady was invited to join in the IAEA scientists' efforts because of his work in natural attenuation, a naturally occurring process that adsorbs soluble heavy metals onto a mineral surface, thus eliminating it from water or soil. Scientists speculate that the mirror image of the process is providing arsenic to the wells in Bangladesh, and that mineral uptake might conceivably be used to remove arsenic from drinking water -- if the right mineral can be found.

Mass poisoning

The water contamination, which The New York Times has described as "the biggest mass poisoning in history," began innocently in the late 1970s when the United Nations International Children's Emergency Fund (UNICEF) dug about one million wells to provide clean water in rural areas of Bangladesh. Most of the surface water was polluted, and the new wells were seen as the solution to the water dilemma. Villagers dug an additional three million wells at their own expense, mostly used for crop irrigation. No one knew the new wells were polluted because they were not tested for arsenic contamination.

Arsenic poisoning started showing up in the mid-1980s, and today it is estimated that hundreds of thousands of people throughout Bangladesh are suffering from it and millions more are at great risk. It can cause breathing difficulties, skin discoloration, lesions, cancer, and ultimately death. The World Bank surveyed 10 percent of the four million wells in Bangladesh and found that 40 percent contained significant contamination.

Scientists have been struggling to determine the cause. Originally they believed arsenic might be coming from pyrite (iron sulfide -- "fool's gold") in groundwater. More recently they concluded the arsenic originated in iron oxide coatings of rocks lining the aquifer. Arsenic may be on surface coatings, whereupon fresh water can easily wash it off. Or it may be buried deep inside the mineral coating with the arsenic seeping out at weak points, like cracks, in the coatings.

"It's important to understand the origins of the arsenic," Brady says. "Once we do that, we can figure out how persistent the problem is likely to be, and it might give clues as to how to get it out."

'Getters' sought

In the meantime the quest continues to find a way to eliminate the arsenic from the water. Brady and several other Sandia scientists have been designing "getters" -- mineral solids that "suck" much of a particular contaminant out of the water. The getters would be external to the wells. Contaminants are attracted to a specific type of mineral and then eventually become entrapped in it, freeing the water or soil of the metal molecules.

The Sandia researchers have been successful in using this technique to remove iodide -- a contaminant emitted by nuclear waste -- from groundwater. Both iodide and arsenic are anions, negatively charged ions. In theory, similar methods could be used to clean up both.

Brady says the team has identified at least two types of minerals that they believe might pull out arsenic. This was accomplished through molecular modeling of arsenic interaction with mineral surfaces.

"This helped us rule out certain minerals and told us which ones might be getters," Brady says. "As a result, we don't have to test every mineral."

Brady says the next step will be to run arsenic-contaminated water through the selected minerals and determine if and how fast the arsenic sorbs.

If this works, they will have found a cheap and easy way to remove arsenic from drinking water.

"Existing methods of arsenic cleanup, including distillation, would cost hundreds of millions of dollars," Brady says. "That is well out of the price range of Bangladesh, a country where the per capita income is roughly $250. A less expensive method of cleanup must be found. Maybe the Sandia-designed getters will be the one."


Story Source:

The above story is based on materials provided by Sandia National Laboratories. Note: Materials may be edited for content and length.


Cite This Page:

Sandia National Laboratories. "Sandia Attenuation Technology May Help Resolve Arsenic Environmental Crisis In Bangladesh." ScienceDaily. ScienceDaily, 20 April 2000. <www.sciencedaily.com/releases/2000/04/000420074303.htm>.
Sandia National Laboratories. (2000, April 20). Sandia Attenuation Technology May Help Resolve Arsenic Environmental Crisis In Bangladesh. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2000/04/000420074303.htm
Sandia National Laboratories. "Sandia Attenuation Technology May Help Resolve Arsenic Environmental Crisis In Bangladesh." ScienceDaily. www.sciencedaily.com/releases/2000/04/000420074303.htm (accessed September 16, 2014).

Share This



More Earth & Climate News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Conservationists Face Uphill PR Battle With New Shark Rules

Conservationists Face Uphill PR Battle With New Shark Rules

Newsy (Sep. 14, 2014) New conservation measures for shark fishing face an uphill PR battle in the fight to slow shark extinction. Video provided by Newsy
Powered by NewsLook.com
Pakistan's 'killer Mountain' Fails to Draw Tourists After Attack

Pakistan's 'killer Mountain' Fails to Draw Tourists After Attack

AFP (Sep. 12, 2014) In June 2013, 10 foreign mountaineers and their guide were murdered on Nanga Parbat, an iconic peak that stands at 8,126m tall in northern Pakisan. Duration: 02:34 Video provided by AFP
Powered by NewsLook.com
Solar Storm To Hit This Weekend, Scientists Not Worried

Solar Storm To Hit This Weekend, Scientists Not Worried

Newsy (Sep. 11, 2014) Two solar flares which erupted in our direction this week will arrive this weekend. The resulting solar storm will be powerful but not dangerous. Video provided by Newsy
Powered by NewsLook.com
The Ozone Layer Is Recovering, But It's Not All Good News

The Ozone Layer Is Recovering, But It's Not All Good News

Newsy (Sep. 11, 2014) The Ozone layer is recovering thickness! Hooray! But in helping its recovery, we may have also helped put more greenhouse gases out there. Hooray? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins