Featured Research

from universities, journals, and other organizations

Scientists Learn How Kaposi’s Sarcoma Virus Sabotages Immune System

Date:
July 5, 2000
Source:
University Of California, San Francisco
Summary:
A virus that causes a common form of AIDS-related cancer sabotages the body's immune system in a novel and previously unsuspected way, UCSF scientists have discovered.

A virus that causes a common form of AIDS-related cancer sabotages the body's immune system in a novel and previously unsuspected way, UCSF scientists have discovered.

When the virus associated with Kaposi's sarcoma (KS) invades a cell, two of the KS virus genes direct the cell to remove sentries posted on the cell surface and ship them to the interior for destruction, the researchers report.

The sentries -- proteins of the major histocompatibility complex, or MHC-1 -- constitute one of the cell's major lines of defense, and would otherwise tag the invaders for quick attack by the host immune system.

Other viruses sometimes disarm this line of defense too, but typically by blocking deployment of the sentries rather than getting the cell to recall them and target them for internal destruction. The approach evolved by the Kaposi's-associated herpesvirus (KSHV) is a novel strategy in the arms race between viruses and the immune system, says Donald Ganem, MD, an investigator of the Howard Hughes Medical Institute and professor of microbiology and immunology at UCSF. Ganem is senior author on a study describing the new research.

In the virus-immune system arms race, each new deployment by one side is met with a riposte from the other, Ganem says. "And there's every reason to believe this race isn't over. With every new strategy for host defense comes a selective pressure for the virus to find a way to circumvent that defense."

The research describing the KS virus genes and their function in immune sabotage is published in the current issue of the Proceedings of the National Academy of Sciences. First author is Laurent Coscoy, PhD, an HHMI postdoctoral researcher in Ganem's lab.

One of the intriguing findings in the new research is the discovery that the two proteins responsible for sequestering the MHC sentries and tagging them for destruction -- the process known as endocytosis -- do not act at the site where this action occurs, not even in the same subcellular compartment, the scientists report.

"We were surprised to discover that whereas the MHC-1 is engulfed by structures called endosomes near the surface of the cell, the viral proteins are localized in the interior of the cell, in the endoplasmic reticulum," said Coscoy.

Coscoy suggests two models for how this could occur: Either a very small population of the viral proteins -- too small to be detected experimentally -- travels to the cell membrane to cause MHC-1 to become vulnerable to the cell's endocytic machinery, or -- in a more radical proposal -- the proteins may trigger a signaling pathway from their internal location that induces the cell's surface proteins to carry out the sequestering of MHC-1.

Ganem's lab has studied KSHV since its discovery seven years ago, and was the first to successfully grow the virus in culture. In the current research, the UCSF scientists systematically examined a collection of genes that they suspected to play a role in disease induction by the virus. They tested the ability of each of these genes to reduce levels of MHC-1 in cultured cells. This identified two viral genes, called K3 and K5, that reduced MHC-1 proteins at the cell surface by 20- to 30-fold. The two genes are about 40 percent identical to one another, but are not related to any other known genes, they report.

Ganem and Coscoy are now looking at other aspects of immune function that might be modulated by the two virus genes they identified, as well as continuing to search for additional viral proteins that might impair host immunity in other ways.

Until the advent of modern antiretroviral therapies for AIDS, Kaposi's sarcoma was the most common cancer of AIDS patients. Therapies that now control the AIDS virus have also controlled KS, Ganem pointed out, because as patients become less immunodeficient they can better control the replication of KSHV -- despite the ability of KSHV to encode functions like K3 and K5. But when host defenses are somewhat impaired, further immune sabotage by proteins like K3 and K5 can help KSHV spread more widely in the patient and ultimately lead to formation of a tumor.


Story Source:

The above story is based on materials provided by University Of California, San Francisco. Note: Materials may be edited for content and length.


Cite This Page:

University Of California, San Francisco. "Scientists Learn How Kaposi’s Sarcoma Virus Sabotages Immune System." ScienceDaily. ScienceDaily, 5 July 2000. <www.sciencedaily.com/releases/2000/06/000625232411.htm>.
University Of California, San Francisco. (2000, July 5). Scientists Learn How Kaposi’s Sarcoma Virus Sabotages Immune System. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2000/06/000625232411.htm
University Of California, San Francisco. "Scientists Learn How Kaposi’s Sarcoma Virus Sabotages Immune System." ScienceDaily. www.sciencedaily.com/releases/2000/06/000625232411.htm (accessed July 30, 2014).

Share This




More Health & Medicine News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins