Featured Research

from universities, journals, and other organizations

Ancient Earth Had Magnetic Field Three Times Stronger Than Once Thought

Date:
March 6, 2001
Source:
University Of Rochester
Summary:
A new technique for measuring the Earth's magnetic field back to the days of the dinosaurs and beyond has revealed that the magnetic field was as much as three times stronger in ancient Earth than previous techniques suggested. The new method could help scientists better understand ancient Earth, including how its molten core behaved in its early days.

A new technique for measuring the Earth's magnetic field back to the days of the dinosaurs and beyond has revealed that the magnetic field was as much as three times stronger in ancient Earth than previous techniques suggested. The new method could help scientists better understand ancient Earth, including how its molten core behaved in its early days. The results of the first field test of the new technique appear in the March 2 issue of Science.

Scientists use the record of the Earth's magnetic field locked in rocks to tease out secrets of the geodynamo-the currents of molten rock that seethe beneath the Earth's crust, causing everything from earthquakes and volcanoes to the drift of the continents themselves. The Earth's magnetic field also protects us from much of the sun's dangerous radiation, so understanding how it works can help scientists predict its fluctuations and look into what effect those fluctuations could have had on the development of life on Earth.

Researchers have known that the magnetic poles have flipped several times during our planet's lifetime-meaning a compass 100,000 years ago could have pointed south instead of north. The record of the field is captured in tiny pieces of magnetic particles in new lava. The particles orient themselves just like a compass, until the lava cools around them, locking them into place. Great bands of rock displaying north-south flips are laid across the ocean floors.

"We know a lot about the directions of the Earth's magnetic field," says John Tarduno, professor of geophysics and chair of the Department Earth and Environmental Sciences at the University of Rochester and first author of the Science paper. "It's how we unravel plate tectonics and learn something about the core. But to understand the way the field works, you also need to know the field's magnitude, and we don't know nearly enough about that."

The traditional approach to measuring the ancient Earth's magnetic field strength (called paleointensity) was developed more than four decades ago, and has changed little until Tarduno's technique. In the old method, a piece of igneous rock about an inch across is heated and cooled in a chamber that is shielded from any magnetic sources. The magnetism is essentially "drained" from the magnetic particles in the rock, like siphoning water out of a jug. The researchers then "refill the jug," measuring how much magnetism the particles can hold. Two significant drawbacks result from this method, however: a piece of rock hundreds of millions of years old often becomes contaminated over time, and the process often imparts a magnetism to the rock-like water leaking into the jug before you refill it. As a consequence, very ancient samples seem to hold little magnetization, further confounding results that were already in question because of contamination.

Tarduno decided to see if he could use the University's Superconducting Quantum Interference Device (nicknamed "SQUID"), a device normally used in computing chip design, which is extremely sensitive to the tiniest magnetic fields. "With the SQUID we realized that we could start measuring single crystals instead of whole rocks," says Tarduno. "That let us use samples we knew had no contamination."

Early tests showed that feldspar, the most common mineral on the Earth's surface, worked well since it created a microscopic shell around slivers of magnetite, protecting them from contamination. Tarduno's team took samples from a 1955 lava flow in Hawaii and tried to determine if the paleointensity reading would match the actual Earth's magnetic field strength in 1955. It did. Tarduno was essentially doing the same heating/cooling test that had been done for 40 years on large samples, yet doing it on samples the size of a grain of sand, without the possibility of contamination and with much more accurate results.

"We can now measure paleointensity in places we could never measure anything before," says Tarduno. "And the results are more reliable than ever before."

With the method tested, it was time for Tarduno to see what it revealed about the magnetic field back in the days of the dinos. His team took dozens of samples from lava flows in India that were nearly 100 million years old-an unusual time in Earth's history when the field was not reversing-and found that the intensity of the field was three times stronger than the old method suggested. Besides possibly giving T-Rex a better northern lights show, the field strength gives researchers a glimpse into what the Earth's hot, molten core was doing back then.

"Our findings suggest that there is a relationship between magnetic reversals and paleointensity," says Tarduno. "Such a relationship fits very well with supercomputer models. It's an exciting time. We're really starting to understand how the heart of our planet works."

Tarduno will use the new method to plot the paleointensity of different eras in ancient Earth's past. Some of his more challenging work is in the paleointensity of rocks 2.5 billion years old-more than halfway back to Earth's very beginning. The task is especially challenging because scientists believe that the core of the Earth that controls the magnetic field was still forming.

Post doctoral student Rory Cottrell and graduate student Alexei Smirnov, both from the University of Rochester, are also authors on the Science paper.


Story Source:

The above story is based on materials provided by University Of Rochester. Note: Materials may be edited for content and length.


Cite This Page:

University Of Rochester. "Ancient Earth Had Magnetic Field Three Times Stronger Than Once Thought." ScienceDaily. ScienceDaily, 6 March 2001. <www.sciencedaily.com/releases/2001/03/010306072809.htm>.
University Of Rochester. (2001, March 6). Ancient Earth Had Magnetic Field Three Times Stronger Than Once Thought. ScienceDaily. Retrieved September 15, 2014 from www.sciencedaily.com/releases/2001/03/010306072809.htm
University Of Rochester. "Ancient Earth Had Magnetic Field Three Times Stronger Than Once Thought." ScienceDaily. www.sciencedaily.com/releases/2001/03/010306072809.htm (accessed September 15, 2014).

Share This



More Earth & Climate News

Monday, September 15, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Conservationists Face Uphill PR Battle With New Shark Rules

Conservationists Face Uphill PR Battle With New Shark Rules

Newsy (Sep. 14, 2014) New conservation measures for shark fishing face an uphill PR battle in the fight to slow shark extinction. Video provided by Newsy
Powered by NewsLook.com
Pakistan's 'killer Mountain' Fails to Draw Tourists After Attack

Pakistan's 'killer Mountain' Fails to Draw Tourists After Attack

AFP (Sep. 12, 2014) In June 2013, 10 foreign mountaineers and their guide were murdered on Nanga Parbat, an iconic peak that stands at 8,126m tall in northern Pakisan. Duration: 02:34 Video provided by AFP
Powered by NewsLook.com
Solar Storm To Hit This Weekend, Scientists Not Worried

Solar Storm To Hit This Weekend, Scientists Not Worried

Newsy (Sep. 11, 2014) Two solar flares which erupted in our direction this week will arrive this weekend. The resulting solar storm will be powerful but not dangerous. Video provided by Newsy
Powered by NewsLook.com
The Ozone Layer Is Recovering, But It's Not All Good News

The Ozone Layer Is Recovering, But It's Not All Good News

Newsy (Sep. 11, 2014) The Ozone layer is recovering thickness! Hooray! But in helping its recovery, we may have also helped put more greenhouse gases out there. Hooray? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins