Featured Research

from universities, journals, and other organizations

Biodiversity Increases Ecosystems' Ability To Absorb CO2 And Nitrogen

Date:
April 26, 2001
Source:
Brookhaven National Laboratory
Summary:
Biodiversity is an important factor regulating how ecosystems will respond to increasing atmospheric carbon dioxide, say researchers from the U.S. Department of Energy's Brookhaven National Laboratory and their collaborators from several universities. The team of investigators, led by Peter Reich of the University of Minnesota, just released results from a major field study that will appear in the April 12, 2001 issue of Nature.

UPTON, NY -- Biodiversity is an important factor regulating how ecosystems will respond to increasing atmospheric carbon dioxide, say researchers from the U.S. Department of Energy's Brookhaven National Laboratory and their collaborators from several universities. The team of investigators, led by Peter Reich of the University of Minnesota, just released results from a major field study that will appear in the April 12, 2001 issue of Nature. The scientists found that more diverse plant ecosystems were better able to absorb carbon dioxide (CO2) and nitrogen (N), both of which are on the rise due to human activities and industrial processes.

Related Articles


"The key implication of this research is that, in response to elevated levels of CO2 and N, ecosystems with high biodiversity will take up and sequester more carbon and nitrogen than do ecosystems with reduced biodiversity," says Brookhaven plant physiologist David Ellsworth, one of the study authors.

The experiment, called BioCON (Biodiversity, CO2 and N), is the first field study to test the hypothesis that plant species diversity influences ecosystem-scale responses to elevated CO2 and N levels. It was performed in a scientifically controlled grassland environment at the Cedar Creek Natural History area of the University of Minnesota, using free-air CO2 enrichment, or FACE, technology. This experimental technology was developed by Brookhaven National Laboratory to study the effects of enhanced CO2 on plants in their natural environment, rather than in greenhouses or other enclosures. Each FACE facility consists of six 20-meter diameter experimental plots, each encircled by a ring of five-foot tall vertical pipes capable of releasing varying concentrations of CO2. Computers monitor the wind speed, wind direction, and CO2 level within each ring, and adjust the release of CO2 to achieve an atmospheric concentration at a level that is expected to occur fifty years from now.

In the BioCON study, the six rings were each subdivided into experimental plots measuring 2 x 2 meters. In 1997, these subplots were each planted with either 1, 4, 9, or 16 perennial grassland plant species, randomly chosen from among 16 species, including four nitrogen fixers. The experimental plots within three of the rings received no additional CO2, while the other three rings were bathed in CO2 that was about fifty percent above the present ambient concentrations. Beginning in 1998, half the plots received additional N, comparable to the high rates of N deposition observed as a result of atmospheric emissions in industrialized regions.

At the end of both the 1998 and 1999 growing seasons, the scientists measured the total amount of plant matter (biomass) per square meter in each plot. Biomass is an indicator of carbon accumulated via photosynthesis, the process by which green plants use CO2, water, and sunlight to grow. Nitrogen, an important plant nutrient, is absorbed from the soil to become part of the biomass.

The findings: Elevated levels of CO2 and N resulted in increased biomass when compared with plots exposed to ambient levels of CO2 and N. This effect, however, was greatest in plots with high biodiversity as compared to those with fewer species.

The scientists say the greater uptake of CO2 and N in biodiverse plots may be due to positive interactions among the plant species. For example, with greater diversity, species bloom and absorb CO2 and N over the entire growing season, rather than just part of it.

The other collaborators on this study were from the University of California, Berkeley, and the University of Nebraska. The work was funded primarily by the U.S. Department of Energy with additional support from the U.S. National Science Foundation.

The U.S. Department of Energy's Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies. Brookhaven also builds and operates major facilities available to university, industrial, and government scientists. The Laboratory is managed by Brookhaven Science Associates, a corporation founded by Stony Brook University and Battelle, a nonprofit applied science and technology organization.


Story Source:

The above story is based on materials provided by Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Brookhaven National Laboratory. "Biodiversity Increases Ecosystems' Ability To Absorb CO2 And Nitrogen." ScienceDaily. ScienceDaily, 26 April 2001. <www.sciencedaily.com/releases/2001/04/010412081455.htm>.
Brookhaven National Laboratory. (2001, April 26). Biodiversity Increases Ecosystems' Ability To Absorb CO2 And Nitrogen. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2001/04/010412081455.htm
Brookhaven National Laboratory. "Biodiversity Increases Ecosystems' Ability To Absorb CO2 And Nitrogen." ScienceDaily. www.sciencedaily.com/releases/2001/04/010412081455.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Arctic Warming Twice As Fast As Rest Of Planet

Arctic Warming Twice As Fast As Rest Of Planet

Newsy (Dec. 18, 2014) The Arctic is warming twice as fast as the rest of the planet, thanks in part to something called feedback. Video provided by Newsy
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com
Ivory Trade Boom Swamps Law Efforts

Ivory Trade Boom Swamps Law Efforts

Reuters - Business Video Online (Dec. 17, 2014) Demand for ivory has claimed the lives of tens of thousands of African elephants and now a conservation report says the illegal trade is overwhelming efforts to enforce the law. Amy Pollock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins