Featured Research

from universities, journals, and other organizations

Ancient Climate Excursion Linked To A Rare Anomaly In Earth's Orbit

Date:
April 16, 2001
Source:
University Of California, Santa Cruz
Summary:
About 23 million years ago, a huge ice sheet spread over Antarctica, temporarily reversing a general trend of global warming and decreasing ice volume. Now a team of researchers has discovered that this climatic blip at the boundary between the Oligocene and Miocene epochs corresponded with a rare combination of events in the pattern of Earth's orbit around the Sun.

SANTA CRUZ, CA -- About 23 million years ago, a huge ice sheet spread over Antarctica, temporarily reversing a general trend of global warming and decreasing ice volume. Now a team of researchers has discovered that this climatic blip at the boundary between the Oligocene and Miocene epochs corresponded with a rare combination of events in the pattern of Earth's orbit around the Sun.

Related Articles


In a paper published in the April 13 issue of the journal Science, the researchers show that the transient glaciation and other climatic variations during a period from about 20 to 25.5 million years ago correspond with variations in Earth's orbit known as Milankovitch cycles. Although the concept of such relationships is not new, some of the results were surprising, said James Zachos, a professor of Earth sciences at the University of California, Santa Cruz, and lead author of the paper.

"When we began examining the temporal relationship of the orbital oscillations relative to the oscillations in the climate record, we never suspected that the transient glaciation at 23 million years ago had anything to do with orbital anomalies," Zachos said.

The astrophysicist Milutin Milankovitch first proposed that cyclical variations in certain elements of Earth-Sun geometry can cause major changes in Earth's climate. The main variables are eccentricity, obliquity, and precession. Eccentricity refers to the changing shape of Earth's orbit around the Sun, which varies from nearly circular to elliptical over a cycle of about 100,000 years. Obliquity refers to the angle at which Earth's axis is tilted with respect to the plane of its orbit, varying between 22.1 degrees and 24.5 degrees over a 41,000-year cycle. And precession is the gradual change in the direction Earth's axis is pointing, which completes a cycle every 21,000 years.

"Because there are several components of orbital variability, each with lower frequency components of amplitude modulation, there is the potential for unusual interactions between them on long timescales of tens of millions of years," Zachos said. "What we found at 23 million years ago is a rare congruence of a low point in Earth's eccentricity and a period of minimal variation in obliquity."

The result of this rare congruence was a period of about 200,000 years when there was unusually low variability in the planet's climate, with reduced extremes of seasonal warmth and coldness. Earth's orbit was nearly circular, so its distance from the Sun stayed about the same throughout the year. In addition, the tilt of Earth's axis, which gives rise to the seasons, varied less than usual. In other words, the tilt doesn't always vary between the same extremes in its 41,000-year cycles; the obliquity cycle itself varies in amplitude over a longer period of about 1.25 million years. Similarly, the eccentricity cycle peaks every 400,000 years.

The combination of a low-amplitude "node" in the obliquity cycle and a minimum in eccentricity would have caused only several degrees difference in summer temperatures at the poles, but it was probably enough to allow the Antarctic ice sheet to expand, Zachos said.

Zachos's collaborators on the paper were Nicholas Shackleton and Heiko Pδlike of Cambridge University, Justin Revenaugh of UC Santa Cruz, and Benjamin Flower of the University of South Florida.

The researchers obtained detailed climate records for the late Oligocene and early Miocene by analyzing sediment cores drilled out of the ocean floor. Cutting through layers of sediments laid down over millions of years, such cores contain a chronological record of past climates written in the chemistry of fossilized shells left behind by tiny marine organisms. Oxygen isotopes in the shells, for example, reflect ocean water temperatures and the amount of ice trapped in glaciers.

In the 1970s, scientists using these techniques obtained the first good evidence in support of Milankovitch's theory, almost 50 years after he had proposed it. According to Zachos, researchers are still trying to get a handle on the relationships between climate cycles and orbital variations. Since most of the research has focused on the past 5 million years, the new paper is valuable because it looks at a more distant window in time when conditions on the planet were different.

In the period they examined, the late Oligocene and early Miocene, Zachos and his collaborators found evidence of several climate cycles with frequencies corresponding to the Milankovitch cycles. But the correspondence of the orbital anomaly with the transient glaciation event at the boundary between the two epochs is especially interesting, Zachos said. The climate system seems to have undergone a fundamental shift at this boundary, which also marks a major break in the paleontologic record.

"I'm not sure everyone will be convinced that the orbital anomaly alone is responsible," Zachos said. "But the congruence of those orbital cycles is a very rare event, and the fact that it exactly corresponds with this rare climatic event is compelling."


Story Source:

The above story is based on materials provided by University Of California, Santa Cruz. Note: Materials may be edited for content and length.


Cite This Page:

University Of California, Santa Cruz. "Ancient Climate Excursion Linked To A Rare Anomaly In Earth's Orbit." ScienceDaily. ScienceDaily, 16 April 2001. <www.sciencedaily.com/releases/2001/04/010413081139.htm>.
University Of California, Santa Cruz. (2001, April 16). Ancient Climate Excursion Linked To A Rare Anomaly In Earth's Orbit. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2001/04/010413081139.htm
University Of California, Santa Cruz. "Ancient Climate Excursion Linked To A Rare Anomaly In Earth's Orbit." ScienceDaily. www.sciencedaily.com/releases/2001/04/010413081139.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com
3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) — A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins