Featured Research

from universities, journals, and other organizations

Wetter Upper Atmosphere May Delay Global Ozone Recovery

Date:
April 18, 2001
Source:
NASA/Goddard Space Flight Center--EOS Project Science Office
Summary:
NASA research has shown that increasing water-vapor in the stratosphere, which results partially from greenhouse gases, may delay ozone recovery and increase the rate of climate change.

NASA research has shown that increasing water-vapor in the stratosphere, which results partially from greenhouse gases, may delay ozone recovery and increase the rate of climate change.

Related Articles


Drew Shindell, an atmospheric scientist from NASA's Goddard Institute for Space Studies (GISS) and Columbia University, NY, used the NASA/GISS global climate model with satellite and other remote sensing data to investigate long-term stratospheric cooling and ozone depletion. This study is the first to link greenhouse gases to increased ozone depletion over populated areas.

Shindell found that he was able to best simulate the behavior of temperature and ozone in the upper atmosphere when he added water vapor data into the climate model.

"Climate models show cooler stratospheric temperatures happen when there is more water vapor present, and water vapor also leads to the breakdown of ozone molecules," Shindell said. According to satellite data, upper atmospheric temperatures around the world (20-35 miles high) have cooled between 5.4-10.8 degrees Fahrenheit over recent decades. The stratosphere is the typically dry layer of the atmosphere above the troposphere, where temperatures increase with height.

According to Shindell there are two driving forces behind the change in stratospheric moisture. "Increased emissions of the greenhouse gas, methane, are transformed into water in the stratosphere," Shindell said, "accounting for about a third of the observed increase in moisture there."

The second cause of change in the upper atmosphere is a greater transport of water from the lower atmosphere, which happens for several reasons. Warmer air holds more water vapor than colder air, so the amount of water vapor in the lower atmosphere increases as it is warmed by the greenhouse effect. Climate models also indicate that greenhouse gases such as carbon dioxide and methane may enhance the transport of water into the stratosphere. Though not fully understood, the increased transport of water vapor to the stratosphere seems likely to have been induced by human activities.

"Rising greenhouse gas emissions account for all or part of the water vapor increase," said Shindell, "which causes stratospheric ozone destruction."

When more water vapor works its way into the stratosphere, the water molecules can be broken down, releasing reactive molecules that can destroy ozone. Shindell noted that his global climate model agrees with satellite observations of the world's stratospheric ozone levels when the water vapor factor is increased in the stratosphere over time. Shindell said, "If the trend of increasing stratospheric water vapor continues, it could increase future global warming and impede ozone stratospheric recovery."

The impact on global warming comes about because both water vapor and ozone are greenhouse gases, which trap heat leaving the Earth. "When they change, the Earth's energy balance changes too, altering the surface climate," said Shindell. Increased water vapor in the stratosphere makes it warmer on the ground by trapping heat, while the ozone loss makes it colder on the ground. Water vapor has a much larger effect, so that overall the changes increase global warming. Shindell stressed that although ozone depletion cools the Earth's surface, repairing stratospheric ozone is very important to block harmful ultraviolet radiation, and other greenhouse gas emissions need to be reduced.

Shindell used seven years of data from the Upper Atmosphere Research Satellite's (UARS) Halogen Occultation Experiment (HALOE) with ground based data to paint a complete picture of the upper atmosphere. He also used 14 years of lower stratospheric measurements that show large increases in water vapor. Though some studies conflict with lower stratospheric observations of water vapor trends, studies released since Shindell's paper was written, agree with the increases he used, and indicate that they have been taking place for more than four decades already.

Shindell's paper, "Climate and Ozone Response to Increased Stratospheric Water Vapor," appears in the April 15th issue of Geophysical Research Letters.

NASA's HALOE was launched on the UARS spacecraft September 12, 1991 as part of the Earth Science Enterprise Program. Its mission includes improvement of understanding stratospheric ozone depletion by analyzing vertical profiles of ozone, hydrogen chloride, hydrogen fluoride, methane, water vapor, nitric oxide, nitrogen dioxide, and aerosols.


Story Source:

The above story is based on materials provided by NASA/Goddard Space Flight Center--EOS Project Science Office. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Goddard Space Flight Center--EOS Project Science Office. "Wetter Upper Atmosphere May Delay Global Ozone Recovery." ScienceDaily. ScienceDaily, 18 April 2001. <www.sciencedaily.com/releases/2001/04/010418072442.htm>.
NASA/Goddard Space Flight Center--EOS Project Science Office. (2001, April 18). Wetter Upper Atmosphere May Delay Global Ozone Recovery. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2001/04/010418072442.htm
NASA/Goddard Space Flight Center--EOS Project Science Office. "Wetter Upper Atmosphere May Delay Global Ozone Recovery." ScienceDaily. www.sciencedaily.com/releases/2001/04/010418072442.htm (accessed October 24, 2014).

Share This



More Earth & Climate News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins