Featured Research

from universities, journals, and other organizations

Scientists Track Down The Root Of Cloning Problems

Date:
May 14, 2001
Source:
Whitehead Institute For Biomedical Research
Summary:
Despite technological advances, two major problems continue to plague the field of animal cloning: few clones survive to term and those that do are grotesquely large. The root of these problems has remained a mystery until now. But a new study led by the Whitehead Institute traces their origin to two separate sources, reporting that while poor survival rate is influenced by the genetic background of the donor cell, the gross overgrowth of clones results from the actual procedure of cloning.

Despite technological advances, two major problems continue to plague the field of animal cloning: few clones survive to term and those that do are grotesquely large. The root of these problems has remained a mystery until now.

But a new study led by the Whitehead Institute traces their origin to two separate sources, reporting that while poor survival rate is influenced by the genetic background of the donor cell, the gross overgrowth of clones results from the actual procedure of cloning.

The findings will add to the crucial body of knowledge needed to improve cloning efficiency and to understand why so few clones survive to term and become healthy adults.

These findings , from Rudolf Jaenisch’s lab at the Whitehead Institute of Biomedical Research, were reported on the web May 1, 2001 in the Proceedings of the National Academies of Science.

"These results are important because they identify two distinct problems that we researchers need to focus on as we work on solving the problems plaguing cloning technology. Now researchers can treat as two separate issues factors in the cloning procedure that cause enlarged animals and the factors in the genetic makeup of donor cells that influence clone survival," says Kevin Eggan, first author on the paper and a graduate student in the Jaenisch lab.

Cloning has captured the attention of biologists because of its potential benefits—the creation of cells and tissues to replace diseased ones, recovery of extinct species, creation of animal models mimicking human diseases, and generation of herds of superior agricultural animals. The cloning procedure involves removing the nucleus, or the genetic command center, of an egg and replacing it with the nucleus of an adult cell. The egg resets the developmental clock of the adult cell back to its embryonic state and gives rise to a new organism that is genetically identical to the donor adult. In practice, however, the theoretically simple procedure has proved troublesome.

Cloned animals and the placenta that nourish them before birth often are dramatically larger than their normal counterparts. Animals also frequently suffer from birth defects and die within hours of birth. These problems, collectively termed large offspring syndrome, result in only 1-5 percent of cloned animals surviving to adulthood. The reasons for these complications have remained a mystery and raised considerable concerns about the cloning process.

The Jaenisch lab found that the genetic background of the donated nucleus influences clone survival, independent of the cloning procedure. When the researchers studied clones created from inbred mice compared to outbred mice, only the clones from outbred mice survived to adulthood. "There may be specific ‘survival’ genes in cells from outbred mice, which protect against the detrimental effects of the manipulations involved in cloning. The race is on to identify those genes," says Eggan.

The Jaenisch lab also tested whether the actual mechanical process of removing a nucleus from a cell and then transplanting it into an egg somehow causes problems for developing clones. To test this, the researchers used embryonic stem cells, which are unique in that they can give rise to an entire organism without using the nuclear transfer cloning procedure. The researchers found that animals developing from mouse embryonic stem cells were not overgrown at birth, but embryonic stem cells used in the cloning procedure gave rise to overgrown animals.

These findings could shed light on similar phenomena observed in cloning other animals, such as cattle, sheep, pigs, and goats, says Eggan.


Story Source:

The above story is based on materials provided by Whitehead Institute For Biomedical Research. Note: Materials may be edited for content and length.


Cite This Page:

Whitehead Institute For Biomedical Research. "Scientists Track Down The Root Of Cloning Problems." ScienceDaily. ScienceDaily, 14 May 2001. <www.sciencedaily.com/releases/2001/05/010511073756.htm>.
Whitehead Institute For Biomedical Research. (2001, May 14). Scientists Track Down The Root Of Cloning Problems. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2001/05/010511073756.htm
Whitehead Institute For Biomedical Research. "Scientists Track Down The Root Of Cloning Problems." ScienceDaily. www.sciencedaily.com/releases/2001/05/010511073756.htm (accessed August 22, 2014).

Share This




More Plants & Animals News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Farm Resurgence Grows With Younger Crowd

Farm Resurgence Grows With Younger Crowd

AP (Aug. 22, 2014) — New England farms are seeing a surge in younger farm hands as the 'buy local' food movement grows across the country. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) — An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) — According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com
Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) — Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins