Featured Research

from universities, journals, and other organizations

Regeneration In The Mammalian Heart Demonstrated By Wistar Researchers

Date:
August 7, 2001
Source:
Wistar Institute
Summary:
Mammalian heart tissue may be capable of regenerating itself after serious injury, according to a new study by researchers at The Wistar Institute. Experiments with a strain of laboratory mice known as MRL mice detailed their potent ability to renew damaged heart tissue with minimal scarring. A report on the findings will appear in the online edition of the Proceedings of the National Academy of Sciences on August 7.

PHILADELPHIA - Mammalian heart tissue may be capable of regenerating itself after serious injury, according to a new study by researchers at The Wistar Institute. Experiments with a strain of laboratory mice known as MRL mice detailed their potent ability to renew damaged heart tissue with minimal scarring. A report on the findings will appear in the online edition of the Proceedings of the National Academy of Sciences on August 7. Importantly, regeneration of heart tissue in the mice was achieved without the use of drugs, transferred cells or tissues, such as stem cells, or any other intervention. The observed healing is a native capacity of this particular strain of mice.

"In these adult mice, cells in the region of an injury to the heart tissue were replaced over time by new cells that were indistinguishable from neighboring healthy heart cells," says Ellen Heber-Katz, Ph.D., a professor at The Wistar Institute and senior author on the study. "After two months, the damaged heart tissue looked normal and functioned well."

The degree of tissue renewal seen in the MRL mice is strikingly atypical of mammalian heart tissue. Similar injuries to the heart tissue of control mice, for example, showed that only 1 to 3 percent of the heart cells in the region of the injury were capable of dividing. In the MRL mice, however, up to 20 percent of the heart cells divided in response to injury.

The only species known to demonstrate similar capacities for regeneration are non-mammalian species - certain reptiles and amphibians - able to replace limbs and other body parts.

"In more than 15 years of investigations involving muscle tissue, I'd never seen anything like this," says John M. Leferovich, first author on the study. "The observation was quite stunning."

The current study follows on observations of the remarkable regenerative powers of the MRL mice first published by Heber-Katz and her coworkers in 1998. At that time, they noted the mice were able to heal small holes punched in their ears for identification purposes, with little or no evidence of scarring.

The research is now moving in the direction of identifying specific genetic and molecular differences between the MRL and other mouse strains. Such differences may ultimately lead to the identification of candidate drug compounds for improved healing in a broad array of injuries and disease.

In addition to first author Leferovich and senior author Heber-Katz, the other Wistar authors on the study are Khamilia Bedelbaeva, Stefan Samulewicz, and Xiang-Ming Zhang. Authors Donna Zwas, M.D., and Edward B. Lankford, M.D., Ph.D., with the Division of Cardiovascular Medicine at Thomas Jefferson University in Philadelphia, performed the functional studies.

The research has been generously funded from its inception by the G. Harold and Leila Y. Mathers Charitable Foundation, a private foundation based in Mount Kisco, NY. Recently, the work has also received substantial funding from the F.M. Kirby Foundation in Morristown, NJ, and the National Institutes of Health.

The Wistar Institute is an independent nonprofit research institution dedicated to discovering the causes and cures for major diseases, including cancer and AIDS. The Institute is a National Cancer Institute-designated Cancer Center - one of the nation's first, funded continuously since 1968, and one of only 10 focused on basic research. Founded in 1892, Wistar was the first independent institution devoted to medical research and training in the nation. Since the Institute's inception, Wistar scientists have helped to improve world health through the development of vaccines against rabies, rubella, rotavirus, and cytomegalovirus and the identification of genes associated with breast, lung, prostate and other cancers.


Story Source:

The above story is based on materials provided by Wistar Institute. Note: Materials may be edited for content and length.


Cite This Page:

Wistar Institute. "Regeneration In The Mammalian Heart Demonstrated By Wistar Researchers." ScienceDaily. ScienceDaily, 7 August 2001. <www.sciencedaily.com/releases/2001/08/010807080356.htm>.
Wistar Institute. (2001, August 7). Regeneration In The Mammalian Heart Demonstrated By Wistar Researchers. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2001/08/010807080356.htm
Wistar Institute. "Regeneration In The Mammalian Heart Demonstrated By Wistar Researchers." ScienceDaily. www.sciencedaily.com/releases/2001/08/010807080356.htm (accessed August 21, 2014).

Share This




More Plants & Animals News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Unsustainable Elephant Poaching Killed 100K In 3 Years

Unsustainable Elephant Poaching Killed 100K In 3 Years

Newsy (Aug. 20, 2014) — Poachers have killed 100,000 elephants between 2010 and 2012, as the booming ivory trade takes its toll on the animals in Africa. Video provided by Newsy
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins