Featured Research

from universities, journals, and other organizations

Forestalling Pesticide, Antibiotic Resistance Possible, Theory Predicts

Date:
August 22, 2001
Source:
Purdue University
Summary:
For years, farmers and agribusinesses have talked about being on the "pesticide treadmill": A few years after a pesticide is introduced, insects develop resistance to it. So another chemical is used — at least until the bugs overwhelm that one. Then another chemical is used. Then another. Then another. But Barry Pittendrigh, assistant professor of entomology at Purdue University, says it's possible to stop the treadmill, or at least slow it to a crawl.

WEST LAFAYETTE, Ind. — For years, farmers and agribusinesses have talked about being on the "pesticide treadmill": A few years after a pesticide is introduced, insects develop resistance to it. So another chemical is used — at least until the bugs overwhelm that one.

Related Articles


Then another chemical is used. Then another. Then another.

But Barry Pittendrigh, assistant professor of entomology at Purdue University, says it's possible to stop the treadmill, or at least slow it to a crawl.

Pittendrigh and Patrick Gaffney, of the University of Wisconsin-Madison, have developed a method to use pesticides so that genetic resistance doesn't arise.

The technique is called negative cross-resistance, and it involves using multiple pesticides in a precise way to stop the pests.

With the technique, scientists would identify a second biocide — pesticide, antibiotic, herbicide or fungicide — that specifically kills the resistant pest. Then the two biocides would be used together, either concurrently or alternated, to prevent resistance.

Previous attempts to find compounds that would have a negative cross-resistance effect haven't worked because they focused on fewer than several dozen compounds, Pittendrigh says.

However, Pittendrigh says it is necessary to screen upwards of 100,000 compounds to develop a negative cross-resistance system. Pittendrigh and Gaffney have invented a method to conduct these screens.

"Specifically, in our paper, we outline how companies or individuals can search for and develop NCR compounds to a commercially applicable level," Pittendrigh says. "This paper provides part of the theoretical framework for research currently in progress here at Purdue for the development of negative cross-resistant toxins and their use in field applications."

The researchers say their model shows that using negative cross-resistant biocides could delay resistance for decades, or even more than 100 years in some situations.

"Although negative cross-resistance is not 'the' answer to dealing with resistance to pesticides, it certainly has the potential to play a significant role in dramatically slowing the rate at which resistance enters insect populations," Pittendrigh says.

The result, the researchers say, would be reduced costs, both financial and social.

"Nature will always find a way to get around whatever we do to control organisms," Pittendrigh says. "But in some cases, this method may buy us years of usefulness for compounds that are on the market. It costs a large amount of money to bring a pesticide to market. If it's a highly important biocide, such as an insecticide for a major pest or an important antibiotic, this method could have great value."

The method is described in a paper appearing Tuesday (8/21) in the Journal of Theoretical Biology. The research was funded by the Purdue Department of Entomology.

Pittendrigh says, in theory, the method also should work to prevent antibiotic resistance in bacteria.

"Although this paper is primarily focused on issues of insecticide resistance, we don't rule out the possibility that this approach may also be useful in combating antibiotic resistance," he says. "But, we will leave the applicability of NCR in bacteria to those that work in antibiotic resistance."

The method also could be used with herbicides or fungicides.

No pesticide is 100 percent effective against its target, and that's where the problem of chemical resistance comes in.

If a pesticide kills 98 out of 100 bugs, the only two left are both resistant to the chemical. If those two mate, then all of their offspring also will be resistant.

If the same thing happens in field after field, soon entire populations of the pest are immune to the effects of the pesticide.

The situation is worse with genetically modified crops, such as Bt corn. Because these plants deliver pesticide in such a direct and effective manner, they are even more susceptible to the rise of resistant insects.

Although resistance can vary, some examples of insect resistance can be dramatic.

Dieldrin is a compound no longer used commercially, but still commonly used in laboratories. Scientists often use fruit flies, called Drosophila, in their experiments, and certain strains of Drosophila are so immune to Dieldrin that they can walk unharmed on pure crystals of the pesticide.

Scientists are able to create resistant insects in the laboratory by using a process known as EMS (ethylmethylsulfanate) mutagenesis. Using the compound, scientists can produce insects with great genetic variability, and screen for those that are resistant to the insecticide being tested.

"With EMS mutagenesis you can actually create resistance in the laboratory that is similar to that in the field," Pittendrigh says. "As a general rule, this mimics nature, but at a much faster rate."

Once a new compound has been identified as being effective on resistant pests, it can either be alternated with the original biocide, or they can be paired together.

"My own bias is to use two compounds at once, because, at the end of the day, it's the simplest method," Pittendrigh says. "Farmers could spray with the original pesticide for five years, and then in the sixth year everybody would have to use both pesticides. But if somebody tried to cut corners and didn't use both compounds, the method wouldn't work. That's why my bias is to use two compounds concurrently because it's the easiest to manage."

Although using two pesticides is obviously more expensive than using just one, Pittendrigh says genetically modified crops lower this hurdle.

"With traditional agriculture, there are concerns about the costs of delivering two different pesticides at once," Pittendrigh says. "But with genetically modified crops, it's much easier and much more cost effective to deliver two pesticides."


Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.


Cite This Page:

Purdue University. "Forestalling Pesticide, Antibiotic Resistance Possible, Theory Predicts." ScienceDaily. ScienceDaily, 22 August 2001. <www.sciencedaily.com/releases/2001/08/010821074145.htm>.
Purdue University. (2001, August 22). Forestalling Pesticide, Antibiotic Resistance Possible, Theory Predicts. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2001/08/010821074145.htm
Purdue University. "Forestalling Pesticide, Antibiotic Resistance Possible, Theory Predicts." ScienceDaily. www.sciencedaily.com/releases/2001/08/010821074145.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com
Rover Finds More Clues About Possible Life On Mars

Rover Finds More Clues About Possible Life On Mars

Newsy (Dec. 17, 2014) NASA's Curiosity rover detected methane on Mars and organic compounds on the surface, but it doesn't quite prove there was life ... yet. Video provided by Newsy
Powered by NewsLook.com
Ivory Trade Boom Swamps Law Efforts

Ivory Trade Boom Swamps Law Efforts

Reuters - Business Video Online (Dec. 17, 2014) Demand for ivory has claimed the lives of tens of thousands of African elephants and now a conservation report says the illegal trade is overwhelming efforts to enforce the law. Amy Pollock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins