Featured Research

from universities, journals, and other organizations

Researchers Report On Possible Biological Effects Of Deep-Sea CO2 Sequestration

Date:
October 15, 2001
Source:
Monterey Bay Aquarium Research Institute
Summary:
Deep-sea animals may be highly sensitive to environmental changes in carbon dioxide concentration and pH, the predicted consequences of deep-sea carbon sequestration. A study by researchers, reported in the 12 October 2001 issue of Science, exposes the need for more research on the biological impacts of CO2 injection in the ocean.

MOSS LANDING, California -— Deep-sea animals may be highly sensitive to environmental changes in carbon dioxide concentration and pH, the predicted consequences of deep-sea carbon sequestration. A study by researchers, reported in the 12 October 2001 issue of Science, exposes the need for more research on the biological impacts of CO2 injection in the ocean.

Related Articles


In a survey of the relevant literature, Monterey Bay Aquarium Research Institute (MBARI) marine ecologist Brad Seibel and his colleague Patrick Walsh of the University of Miami's Rosenstiel School of Marine and Atmospheric Science summarize how deep-sea animals respond to the physiological stress caused by increased carbon dioxide in their environment.

“We set out to synthesize and disseminate what is known about deep-sea life physiology in the context of the environmental changes that are likely to result from carbon sequestration," said Seibel. "Increasing CO2 causes a decrease in seawater pH, creating an acidic environment that must be compensated for by physiological responses in living organisms."

Decreased pH can result in metabolic suppression which can inhibit growth and reproduction. Previous studies have established that deep-sea fish and invertebrates have low metabolic rates. Consequently, they lack the metabolic machinery required to compensate body fluid pH changes. Seibel and Walsh describe how even small changes in pH can impact these organisms.

International agencies are investigating deep-sea carbon sequestration as one possible mitigation technique for emissions of carbon dioxide, one of the primary greenhouse gases involved in global warming. MBARI chemists have conducted some of the first experiments aimed at understanding the chemistry and physics of CO2 in the deep ocean. New biological studies are now underway to investigate the ecological effects of CO2 sequestration.

"Many deep-sea organisms are extremely sensitive to environmental change. We need more studies to characterize the extent and method of CO2 injection to predict the broader consequences on deep-sea ecosystems and the global biogeochemical cycles dependent on them," said Seibel.


Story Source:

The above story is based on materials provided by Monterey Bay Aquarium Research Institute. Note: Materials may be edited for content and length.


Cite This Page:

Monterey Bay Aquarium Research Institute. "Researchers Report On Possible Biological Effects Of Deep-Sea CO2 Sequestration." ScienceDaily. ScienceDaily, 15 October 2001. <www.sciencedaily.com/releases/2001/10/011012073925.htm>.
Monterey Bay Aquarium Research Institute. (2001, October 15). Researchers Report On Possible Biological Effects Of Deep-Sea CO2 Sequestration. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2001/10/011012073925.htm
Monterey Bay Aquarium Research Institute. "Researchers Report On Possible Biological Effects Of Deep-Sea CO2 Sequestration." ScienceDaily. www.sciencedaily.com/releases/2001/10/011012073925.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Lava on Track to Hit Hawaii Market

Raw: Lava on Track to Hit Hawaii Market

AP (Dec. 19, 2014) Lava from an active volcano on Hawaii's Big Island slowed slightly but stayed on track to hit a shopping center in the small town of Pahoa. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Arctic Warming Twice As Fast As Rest Of Planet

Arctic Warming Twice As Fast As Rest Of Planet

Newsy (Dec. 18, 2014) The Arctic is warming twice as fast as the rest of the planet, thanks in part to something called feedback. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins