Featured Research

from universities, journals, and other organizations

Studies Of Genes In Mice And Common Worm May Accelerate Research On Blood Diseases, Cancers

Date:
April 1, 2002
Source:
University Of Texas Southwestern Medical Center At Dallas
Summary:
Two studies led by a UT Southwestern Medical Center at Dallas scientist have revealed comparable genes that control what cells become in both mice and a common worm, findings that may lead to expediting research on human-blood diseases.

DALLAS – April 1, 2002 – Two studies led by a UT Southwestern Medical Center at Dallas scientist have revealed comparable genes that control what cells become in both mice and a common worm, findings that may lead to expediting research on human-blood diseases.

“We think we have found a way of efficiently studying how early blood-cell development is controlled and how gene defects in this process might lead to the development of blood diseases, including cancer,” said Dr. Scott Cameron, an assistant professor of pediatrics and molecular biology and a pediatric oncologist who joined UT Southwestern in July.

His research, reported in the April 8 issue of the journal Development, found that the pag-3 gene determines the fate of embryonic nerve cells in the microscopic worm Caenorhabditis elegans, a common soil nematode that became the first animal to have its genome sequenced.

“I showed that the gene in the worm, C. elegans, determines what the daughter cells will become after a cell division in the nervous system,” Cameron said.

On the basis of what he and his colleagues learned from the worm, they collaborated in a subsequent study to knock out the counterpart mouse genes, which perform similar cell-determination functions but in the blood cells.

“In the gene-deprived mice, I found a defect in blood formation exactly consistent with what was predicted by the worm work,” said Cameron, the principal investigator who collaborated with Dr. Stuart Orkin’s lab at the Howard Hughes Medical Institute at Harvard Medical School and with Children’s Hospital, both in Boston. The mice study was published first, in the February issue of Genes & Development.

His pag-3 gene study found that a mutation resulted in a failure of the worm to develop neuron cells controlling forward and backward mobility. “Worms with the mutated pag-3 do not move well,” Cameron said.

The worm’s uniform genetic patterns from egg to mature adult provide clues to uncovering the counterpart but more complex genetic patterns in mice, and mice patterns are closely akin to the still more complex human genetic mechanisms, he said.

Cameron’s later mouse study revealed that when the Gfi-1b gene is muted in mice, their blood-stem cells fail to form red cells and platelets, causing mice embryos to die 11-12 days after fertilization. Related research has shown that knocking out the sister Gfi-1 gene prevents development of certain white blood cells, resulting in the mice dying shortly after birth.

The blood-cell genetic defects in the mice were “precisely consistent with the defect identified in embryonic nerve cells in C. elegans. I can use forthcoming studies of cell development in the worm to tell me what experiments to do in the mouse,” Cameron said.

“Different mutations in the Gfi-1 gene have been linked to some cancer tumors in mice.”

Cameron hopes to find comparable links to cancer tumors in humans, though he cautions that gene numbers, roles, mutations and other variants contrast sharply between the mouse and human genomes and raise major challenges for human-disease research. “But I know that, overall, I’m in the right genetic neighborhood,” he said.

Since the early 1960s, the study of microscopic C. elegans has yielded insights on mammalian genetics because, Cameron said, this worm is the only animal found to have known cell-division patterns that don’t vary during maturation from fertilized larval egg to adult.

“One of the most abundant animal species on earth, the worm will eat your tomatoes,” he noted, “but it has also become a powerful research tool.”

His ongoing work, which could ultimately reveal a molecular pathway to reverse or modify blood-linked genetic defects, and the two recent studies began while he worked as a researcher and physician at the Dana Farber Cancer Institute of Harvard Medical School in Boston and the Massachusetts Institute of Technology in Cambridge.

Also contributing to the worm work were scientists at Howard Hughes research branches at Harvard and MIT, the Skirball Institute of New York University School of Medicine and the Louisiana State University Health Sciences Center at Shreveport. The pag-3 study was supported by the National Institutes of Health and Howard Hughes Medical Institute at MIT.


Story Source:

The above story is based on materials provided by University Of Texas Southwestern Medical Center At Dallas. Note: Materials may be edited for content and length.


Cite This Page:

University Of Texas Southwestern Medical Center At Dallas. "Studies Of Genes In Mice And Common Worm May Accelerate Research On Blood Diseases, Cancers." ScienceDaily. ScienceDaily, 1 April 2002. <www.sciencedaily.com/releases/2002/04/020401074938.htm>.
University Of Texas Southwestern Medical Center At Dallas. (2002, April 1). Studies Of Genes In Mice And Common Worm May Accelerate Research On Blood Diseases, Cancers. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2002/04/020401074938.htm
University Of Texas Southwestern Medical Center At Dallas. "Studies Of Genes In Mice And Common Worm May Accelerate Research On Blood Diseases, Cancers." ScienceDaily. www.sciencedaily.com/releases/2002/04/020401074938.htm (accessed July 25, 2014).

Share This




More Plants & Animals News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How to Make Single Serving Smoothies: Howdini Hacks

How to Make Single Serving Smoothies: Howdini Hacks

Howdini (July 24, 2014) Smoothies are a great way to get in lots of healthy ingredients, plus they taste great! Howdini has a trick for making the perfect single-size smoothie that will save you time on cleanup too! All you need is a blender and a mason jar. Video provided by Howdini
Powered by NewsLook.com
Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Newsy (July 24, 2014) A new study claims a set of prehistoric T-Rex footprints supports the theory that the giant predators hunted in packs instead of alone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins