Featured Research

from universities, journals, and other organizations

New way to see light through novel protein

Date:
July 8, 2002
Source:
Dartmouth Medical School
Summary:
Dartmouth Medical School geneticists have discovered a new class of proteins that see light, revealing a previously unknown system for how light works. The novel photoreceptors are part of the gears that drive biological clocks, the cellular timekeepers of the circadian rhythm, which paces life's daily ebb and flow in a 24-hour light-dark cycle. Their identification also opens a window for genetically engineered drug delivery systems that exploit the properties of these newfound molecules.

Dartmouth Medical School geneticists have discovered a new class of proteins that see light, revealing a previously unknown system for how light works.

The novel photoreceptors are part of the gears that drive biological clocks, the cellular timekeepers of the circadian rhythm, which paces life's daily ebb and flow in a 24-hour light-dark cycle. Their identification also opens a window for genetically engineered drug delivery systems that exploit the properties of these newfound molecules.

The findings, by Drs. Jay Dunlap and Jennifer Loros, and graduate student Allan Froehlich, will be published in an upcoming issue of Science; they are currently reported online in Science Express.

Dunlap, professor and chair of genetics, and Loros, professor of biochemistry, were the first to delineate circadian clockwork in Neurospora, the common bread mold and one of the best-known genetic model systems. They pieced together how the circadian cycle works and demonstrated how light resets it through a complex of interwoven molecular messages.

"That left open the question then of what actually absorbed the light. What we found is a new paradigm within clocks," Dunlap says. "Light is absorbed by a molecule that is actually within the clock and is an activating element in the clock cycle. This is a new molecular mechanism to see light and a new way for light to have an effect. Although the protein has been known for sometime, this is a configuration of activities that's not been reported before for any protein."

Since bread mold belongs to the fungal phylogenetic kingdom, eventually researchers may be able to harness the proteins against fungal disease. "Virtually nothing is known about how pathogenic fungi respond to light or whether that can be exploited for a noninvasive therapy," Dunlap acknowledges. It may be a long shot, but drug therapies start with properties people don't have. "If you want to do therapy--antifungal, antibacterial or anything--you start looking for biochemical activities that the host does not have that can be targeted on the pathogen."

Froelich, a graduate student with Dunlap and Loros, built on their discovery that the gene frequency (frq) encodes a central cog of the clock cycle and that light resets the clock by acting on frq. He identified the frq parts necessary and sufficient for light induced expression of the gene, and determined that the proteins that bind to these parts are the clock proteins White Collar-1 and White Collar-2 (WC-1 and WC-2). He then showed that both proteins were sufficient for binding, that under appropriate biochemical conditions they could also detect light and, subsequently, that WC-1 is actually the photoreceptor protein.

WC-1 is a transcription factor that partners with WC-2, and binds to DNA of light-regulated genes. Transcription factors are proteins whose role is to regulate expression of genes; they bind to DNA and turn on genes, Dunlap explains. "This is the first case of a transcription factor that is itself a photo pigment and a transcription factor that contains both ability to turn on gene expression and ability to do that in response to light within the same protein."


Story Source:

The above story is based on materials provided by Dartmouth Medical School. Note: Materials may be edited for content and length.


Cite This Page:

Dartmouth Medical School. "New way to see light through novel protein." ScienceDaily. ScienceDaily, 8 July 2002. <www.sciencedaily.com/releases/2002/07/020708081502.htm>.
Dartmouth Medical School. (2002, July 8). New way to see light through novel protein. ScienceDaily. Retrieved September 3, 2014 from www.sciencedaily.com/releases/2002/07/020708081502.htm
Dartmouth Medical School. "New way to see light through novel protein." ScienceDaily. www.sciencedaily.com/releases/2002/07/020708081502.htm (accessed September 3, 2014).

Share This



More Health & Medicine News

Wednesday, September 3, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Snack Attack: Study Says Action Movies Make You Snack More

Snack Attack: Study Says Action Movies Make You Snack More

Newsy (Sep. 2, 2014) You're more likely to gain weight while watching action flicks than you are watching other types of programming, says a new study published in JAMA. Video provided by Newsy
Powered by NewsLook.com
U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Doctors Fear They're Losing Battle Against Ebola

Doctors Fear They're Losing Battle Against Ebola

AP (Sep. 2, 2014) As a third American missionary is confirmed to have contracted Ebola in Liberia, doctors on the ground in West Africa fear they're losing the battle against the outbreak. (Sept. 2) Video provided by AP
Powered by NewsLook.com
Tech Giants Bet on 3D Headsets for Gaming, Healthcare

Tech Giants Bet on 3D Headsets for Gaming, Healthcare

AFP (Sep. 2, 2014) When Facebook acquired the virtual reality hardware developer Oculus VR in March for $2 billion, CEO Mark Zuckerberg hailed the firm's technology as "a new communication platform." Duration: 02:24 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins