Featured Research

from universities, journals, and other organizations

Earth Suffered Pulses Of Misery In Global Wildfires Of 65 Million Years Ago

Date:
September 10, 2002
Source:
University Of Arizona
Summary:
Global wildfires ignited by high-velocity debris from the catastrophic impact of an asteroid or comet with Earth 65 million years ago spread over southern North America, the Indian subcontinent and most of the equatorial part of the world one to three days after impact, according to a new study.

Global wildfires ignited by high-velocity debris from the catastrophic impact of an asteroid or comet with Earth 65 million years ago spread over southern North America, the Indian subcontinent and most of the equatorial part of the world one to three days after impact, according to a new study.

Related Articles


But northern Asia, Europe, Antarctica and possibly much of Australia may have been spared, David A. Kring of the University of Arizona and Daniel D. Durda of the Southwest Research Institute report in the Journal of Geophysical Research -- Planets.

UA planetary scientist H. Jay Melosh in 1990 and others modeled global wildfire scenarios from the horrific impact that is thought to have led to one of the greatest mass extinctions in Earth history, including dinosaur extinction. The impact that blasted the immense Chicxulub crater near Yucatan, Mexico, marked the end of the Age of Reptiles, the Mesozoic, and heralded the Age of Mammals, the Cenozoic.

"We've added more detail in re-evaluating the extent of the wildfires," Kring said. "Our new calculations show that the fires were not ignited in a single pulse, but in multiple pulses at different times around the world. We also explored how the trajectory of the impacting object, which is still unknown, may affect the distribution of these fires."

Their more detailed modeling suggests pulses of misery for life on Earth during days after impact. More than 75 percent of the planet's plant and animal species did not survive to see the Cenozoic.

"The fires were generated after debris ejected from the crater was lofted far above the Earth's atmosphere and then rained back down over a period of about four days. Like countless trillions of meteors, the debris heated the atmosphere and surface temperatures so intensely that ground vegetation spontaneously ignited."

The collision was so energetic -- 10 billion times more energetic than the nuclear bombs that flattened Hiroshima and Nagasaki in 1945 -- that 12 percent of the impact debris was launched beyond Earth into the solar system, Kring said.

About 25 percent of the debris rained back through the atmosphere within two hours of impact. Fifty-five percent fell back to Earth within 8 hours of impact, and 85 percent showered down within 72 hours of impact, according to Kring's and Durda's calculations.

Both physics and Earth's rotation determined the global wildfire pattern. High-energy debris would have concentrated both around the Chicxulub crater in Mexico and its global antipode -- which corresponded to India and the Indian Ocean 65 million years ago. "The way to think of this is, the material was launched around Earth and headed on a return trajectory to its launch point," he explained.

"Then, because the Earth rotates, it turned beneath this returning plume of debris, and the fires migrated to the west. That's what causes the wildfire pattern."

Durda has turned the simulations into a movie that can be viewed at the Lunar and Planetary Lab Space Imagery Center Web site, http://www.lpl.Arizona.edu/SIC/news/chicxulub2.html

Kring and Durda noted not in this paper, but in an unrefereed abstract, that post-impact wildfires generated as much carbon dioxide, and perhaps more carbon dioxide, than limestone vaporized at the impact site. Wildfires played at least as big a role as the limestone target site in disrupting the carbon cycle and in greenhouse warming.

The team proposes to model other impact events using the code they developed for these simulations.


Story Source:

The above story is based on materials provided by University Of Arizona. Note: Materials may be edited for content and length.


Cite This Page:

University Of Arizona. "Earth Suffered Pulses Of Misery In Global Wildfires Of 65 Million Years Ago." ScienceDaily. ScienceDaily, 10 September 2002. <www.sciencedaily.com/releases/2002/09/020910081734.htm>.
University Of Arizona. (2002, September 10). Earth Suffered Pulses Of Misery In Global Wildfires Of 65 Million Years Ago. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2002/09/020910081734.htm
University Of Arizona. "Earth Suffered Pulses Of Misery In Global Wildfires Of 65 Million Years Ago." ScienceDaily. www.sciencedaily.com/releases/2002/09/020910081734.htm (accessed October 25, 2014).

Share This



More Earth & Climate News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins