Featured Research

from universities, journals, and other organizations

Scientists Use Microscope To View Magnetism At Atomic Level

Date:
November 8, 2002
Source:
Ohio University
Summary:
Scientists and engineers build the transistors that run televisions, radios and similar electronic devices based on the moving electric charges of electrons. But the electron also has another key property: a magnetic "spin" that scientists believe could be exploited to develop faster, smaller and more efficient devices.

ATHENS, Ohio – Scientists and engineers build the transistors that run televisions, radios and similar electronic devices based on the moving electric charges of electrons. But the electron also has another key property: a magnetic "spin" that scientists believe could be exploited to develop faster, smaller and more efficient devices.

Related Articles


The first step is to determine the magnetic properties of materials that could be used to create futuristic nanoscale devices, a task that has escaped scientists until now. But research published online November 6 in the journal Physical Review Letters by a team of Ohio University physicists details a technique for measuring magnetism at the atomic scale using a scanning tunneling microscope.

Physicists Arthur Smith and Haiqiang Yang employed the high-powered microscope to explore the magnetic properties of a new crystalline compound comprised of manganese and nitrogen, which has potential use in future electronic or magnetic devices.

"It's the best technique we have for measuring magnetic structure at the atomic scale," said Smith, whose project is funded by the National Science Foundation.

In a device that employs both electronics and "spintronics," a thin layer of magnetic material would be added to conventional electronics to improve performance. Possible applications include a spintronics LED for computer screens, more powerful hard drives and the quantum computer, which could make it possible to perform certain types of complex calculations which would be virtually impossible using conventional computers, said Smith, an assistant professor of physics and astronomy.

"These devices are so rare, so far in the future, that people have only begun to think about what to use them for," he said.

One obstacle scientists face is making the scientific process behind such experimental devices work at room temperature. Current devices work at cold temperatures, typically at or below minus 320 degrees Fahrenheit.

Smith and Yang, a postdoctoral researcher at Ohio University, have been studying the properties of the crystalline compound of manganese and nitrogen for two years, as it has the potential to function at room temperature, Yang said. In the recent experiment, the scientists coated the tip of a needle with magnetized atoms. Then, using it in their microscope like the needle of a record player to "read" the recorded information of a tiny surface area, they observed the magnetic poles of some rows of atoms pointing in one direction, and the poles of other rows of atoms pointing in the opposite direction. On non-magnetic surfaces, the atoms do not have oriented magnetic poles.

Other scientists have had little success using other techniques – which are too indirect or lack the necessary sensitivity -- to image magnetic spin at the atomic level. This suggests that the spin-polarized scanning tunneling microscope holds promise for research in this area, Smith said.

"Our paper provides new evidence that this technique works and that it's a very important technique for nanotechnology," he said.

Nanomagnetism is a growing area of nanotechnology, Smith said, and scientists in the field expect to begin building nanoscale magnetic structures in the next two years. Now that the physicists have been able to measure spin at the nanoscale, Yang added, they also hope to use the scanning tunneling microscope to modify the surface of magnetic compounds.

Collaborators on the paper are Margarita Prikhodko and Walter Lambrecht of Case Western Reserve University.


Story Source:

The above story is based on materials provided by Ohio University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio University. "Scientists Use Microscope To View Magnetism At Atomic Level." ScienceDaily. ScienceDaily, 8 November 2002. <www.sciencedaily.com/releases/2002/11/021107074340.htm>.
Ohio University. (2002, November 8). Scientists Use Microscope To View Magnetism At Atomic Level. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2002/11/021107074340.htm
Ohio University. "Scientists Use Microscope To View Magnetism At Atomic Level." ScienceDaily. www.sciencedaily.com/releases/2002/11/021107074340.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
British 'Bio-Bus' Is Powered By Human Waste

British 'Bio-Bus' Is Powered By Human Waste

Buzz60 (Nov. 21, 2014) British company GENeco debuted what its calling the Bio-Bus, a bus fueled entirely by biomethane gas produced from food scraps and sewage. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins