Featured Research

from universities, journals, and other organizations

UMass Team To Study Bioremediation Of Acid, Heavy Metals From Collapsed Mine

Date:
November 22, 2002
Source:
University Of Massachusetts At Amherst
Summary:
Highly acidic drainage from an abandoned sulfide mine in Rowe is slowly cleaning itself over time, and an interdisciplinary research team from the University of Massachusetts Amherst is studying why. The group brings together experts from the fields of microbiology, geology, engineering, and science education, to determine the extent and rate of bioremediation. Researchers say their findings may enable quicker natural cleanups not just at this mine, but at others throughout the country and the world.

AMHERST, Mass. – Highly acidic drainage from an abandoned sulfide mine in Rowe is slowly cleaning itself over time, and an interdisciplinary research team from the University of Massachusetts Amherst is studying why. The group brings together experts from the fields of microbiology, geology, engineering, and science education, to determine the extent and rate of bioremediation. Researchers say their findings may enable quicker natural cleanups not just at this mine, but at others throughout the country and the world. The interdisciplinary project has received a $1.59-million grant from the "Biocomplexity in the Environment" program of the National Science Foundation. This highly competitive program has funded only 10 projects this year nationwide.

Related Articles


"The mine collapsed in 1911 and filled with groundwater," explained Klaus Nüsslein, assistant professor of microbiology. "The overflowing groundwater drains out of the old mine shafts, and flows down the stream channel." The drainage waters are more acidic than vinegar, with pH values around 2, and carry large loads of metals, including copper, zinc, and iron, Nüsslein said. "In other areas of the country, similar acid-mine drainage from former coal or gold mines can mobilize additional undesirable contaminants." Researchers stress, however, that there is no threat to the local environment or the area's water supply, because the iron sulfide in the Davis Mine contains few hazardous impurities. This makes the site an ideal subject for examining the natural processes that are contained in the drainage. Rowe is located in western Massachusetts, near the Vermont border.

The other UMass researchers involved in the project are Richard Yuretich of geosciences, who is the principal investigator of the project; Sarina Ergas and David Ahlfeld of civil and environmental engineering; and Allan Feldman of the School of Education. Jonathan Lloyd of the University of Manchester, England, is also collaborating, studying a similar abandoned mine in Wales. The group will combine field work, computer modeling, and laboratory research to study the issue over the next five years. In the end, this interdisciplinary group will demonstrate the global importance of using bacteria to clean up the environment.

Nüsslein, a microbiologist, will try to determine which particular microorganisms are oxidizing the acids and heavy metals, providing a natural source of bioremediation. "Obviously these microorganisms are very successful at remediating the site. We want to know which microorganisms are there, which ones are thriving, or just making do, and what their actual function is," he said. Yuretich, a geologist who has brought classes to the site for more than 20 years, will study what role geology is playing in the natural clean-up: "The acid and the heavy metals react with bedrock and other glacial deposits and are neutralized. It's similar to a person with an upset stomach taking an antacid; the acid level drops," said Yuretich.

There are also hydrology issues at work, researchers say. Engineers will study the way the groundwater and surface water are flowing. "There are a series of complex biochemical processes going on in order to enable the bioremediation to take place, and we need hard data to understand those processes," said Ergas. "We need to know the direction of groundwater flow, the amount of water movement, and its chemical composition." added Ahlfeld.

Feldman notes that a strong science education component has been built into the research project. Twelve high-school and middle-school teachers, who are pursuing master's degrees in science education, will work as researchers for spring, summer, and fall, taking what they learn for use in their classroom teaching. "Participation in active research projects is often cited as the best way to learn science and the ways in which scientists think," Feldman said. Surveys and interviews of the teacher-scholars will be used to evaluate their perceptions of the nature of science, engineering, and scientific research. Their K-12 classes will be observed to determine whether their experiences have changed the way in which they understand and teach science, and the effects on their students' learning.


Story Source:

The above story is based on materials provided by University Of Massachusetts At Amherst. Note: Materials may be edited for content and length.


Cite This Page:

University Of Massachusetts At Amherst. "UMass Team To Study Bioremediation Of Acid, Heavy Metals From Collapsed Mine." ScienceDaily. ScienceDaily, 22 November 2002. <www.sciencedaily.com/releases/2002/11/021122072952.htm>.
University Of Massachusetts At Amherst. (2002, November 22). UMass Team To Study Bioremediation Of Acid, Heavy Metals From Collapsed Mine. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2002/11/021122072952.htm
University Of Massachusetts At Amherst. "UMass Team To Study Bioremediation Of Acid, Heavy Metals From Collapsed Mine." ScienceDaily. www.sciencedaily.com/releases/2002/11/021122072952.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Scientists Find Invisible Space Shield Protecting Earth

Scientists Find Invisible Space Shield Protecting Earth

Newsy (Nov. 27, 2014) — An invisible barrier is keeping dangerous super fast electrons from interfering with our atmosphere, but scientists aren't entirely sure how. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins