Featured Research

from universities, journals, and other organizations

Scientists Identify Hundreds Of Worm Genes That Regulate Fat Storage; Genes With Counterparts In Mammals May Shed Light On Obesity

Date:
January 16, 2003
Source:
Massachusetts General Hospital
Summary:
Scientists at Massachusetts General Hospital (MGH) and their colleagues have scoured thousands of genes in the C. elegans worm and have come up with hundreds of promising candidates that may determine how fat is stored and used in a variety of animals. The findings, published in the Jan. 16 issue of Nature, represent the first survey of an entire genome for all genes that regulate fat storage.

Scientists at Massachusetts General Hospital (MGH) and their colleagues have scoured thousands of genes in the C. elegans worm and have come up with hundreds of promising candidates that may determine how fat is stored and used in a variety of animals. The findings, published in the Jan. 16 issue of Nature, represent the first survey of an entire genome for all genes that regulate fat storage.

The research team led by Gary Ruvkun, PhD, of the MGH Department of Molecular Biology, and postdoctoral fellow Kaveh Ashrafi, PhD, identified about 400 genes encompassing a wide range of biochemical activities that control fat storage. These studies were conducted using the tiny roundworm Caenorhabditis elegans, an organism that shares many genes with humans and has helped researchers gain insights into diseases as diverse as cancer, diabetes, and Alzheimer's disease.

Many of the fat regulatory genes identified in this study have counterparts in humans and other mammals. "This study is a major step in pinpointing fat regulators in the human genome," says Ruvkun, who is a professor of Genetics at Harvard Medical School. "Of the estimated 30,000 human genes, our study highlights about 100 genes as likely to play key roles in regulation of fat levels," he continued. Most of these human genes had not previously been predicted to regulate fat storage. This prediction will be tested as obese people are surveyed for mutations in the genes highlighted by this systematic study of fat in worms.

In addition, this study points to new potential therapies for obesity. Inactivation of about 300 worm genes causes worms to store much less fat than normal. Several of the human counterparts of these genes encode proteins that are attractive for the development of drugs. Thus, the researchers suggest that some of the genes identified could point the way for designing drugs to treat obesity and its associated diseases such as diabetes.

To discover this treasure trove of fat regulators, the researchers inactivated genes one at a time and looked for increased or decreased fat content in the worms. Through this time-consuming process, they identified about 300 worm genes that, when inactivated, cause reduced body fat and about 100 genes that cause increased fat storage when turned off. The identified genes were very diverse and included both the expected genes involved in fat and cholesterol metabolism as well as new candidates, some that are expected to function in the central nervous system.

About 200 of the 400 fat regulatory worm genes have counterparts in the human genome. "A number of these worm genes are related to mammalian genes that had already been shown to be important in body weight regulation. But more importantly, we identified many new worm fat regulatory genes, and we believe that their human counterparts will play key roles in human fat regulation as well," says lead author Ashrafi. "The work was done in worms because you can study genetics faster in worms than in other animal models, such as mice," says Ashrafi. "The model is a great tool for discovering genes."

About 600 million years ago the common ancestor to worms and humans also stored fat and regulated its feeding and metabolism based on communication between its stored fat and the brain centers that control feeding. Both the worm and humans have inherited this complex system from that ancestor. It is likely, the researchers say, that failure of these circuits within our bodies is one of the underlying causes of obesity and that drugs can be developed to correct these missing circuits of metabolic communication. The challenge now is for scientists to unravel these regulatory pathways and prioritize the relevant genes in animal models, such as the worm and the mouse.

The researchers also found that some of the identified genes were effective at regulating fat levels in all strains of C. elegans but others could only regulate fat in certain worm obesity syndromes caused by brain defects. The brain also is an important player in the regulation of human fat. Some human obesity syndromes are due to defective assessment of fat levels by the brain that lead to a continuous voracious appetite. Some of the newly identified worm fat regulatory genes are predicted to function in its nervous system, as are the human counterparts to these worm genes.

The work was dependent on the use of an RNA-mediated interference (RNAi) library constructed by the MGH team's collaborators at the Wellcome/Cancer Research Institute in England. The library consists of individual genetic components that each disrupt the expression of one particular gene. With this tool, the researchers were able to systematically screen almost 17,000 worm genes for their potential roles in fat storage.

The other members of the research team are Francesca Chang of the MGH, Jennifer Watts, PhD, of the Institute of Biological Chemistry at Washington State University, and Andrew Fraser, PhD, Ravi Kamath and Julie Ahringer, PhD, of the Wellcome/Cancer Research UK Institute. The study was supported by funds from the National Institutes of Health, the Damon Runyon/Walter Winchell Cancer Research Fund, the U.S. Army, Howard Hughes Medical Institute, and the Wellcome/Cancer Research UK Institute.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $300 million and major research centers in AIDS, cardiovascular research, cancer, cutaneous biology, transplantation biology and photomedicine. In 1994, the MGH joined with Brigham and Women's Hospital to form Partners HealthCare System, an integrated health care delivery system comprising the two academic medical centers, specialty and community hospitals, a network of physician groups and nonacute and home health services.


Story Source:

The above story is based on materials provided by Massachusetts General Hospital. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts General Hospital. "Scientists Identify Hundreds Of Worm Genes That Regulate Fat Storage; Genes With Counterparts In Mammals May Shed Light On Obesity." ScienceDaily. ScienceDaily, 16 January 2003. <www.sciencedaily.com/releases/2003/01/030116074600.htm>.
Massachusetts General Hospital. (2003, January 16). Scientists Identify Hundreds Of Worm Genes That Regulate Fat Storage; Genes With Counterparts In Mammals May Shed Light On Obesity. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2003/01/030116074600.htm
Massachusetts General Hospital. "Scientists Identify Hundreds Of Worm Genes That Regulate Fat Storage; Genes With Counterparts In Mammals May Shed Light On Obesity." ScienceDaily. www.sciencedaily.com/releases/2003/01/030116074600.htm (accessed September 30, 2014).

Share This



More Health & Medicine News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How 'Yes Means Yes' Defines Sexual Assault

How 'Yes Means Yes' Defines Sexual Assault

Newsy (Sep. 29, 2014) Aimed at reducing sexual assaults on college campuses, California has adopted a new law changing the standard of consent for sexual activity. Video provided by Newsy
Powered by NewsLook.com
Scientists May Have Found An Early Sign Of Pancreatic Cancer

Scientists May Have Found An Early Sign Of Pancreatic Cancer

Newsy (Sep. 29, 2014) Researchers looked at 1,500 blood samples and determined people who developed pancreatic cancer had more branched chain amino acids. Video provided by Newsy
Powered by NewsLook.com
Colo. Doctors See Cluster of Enterovirus Cases

Colo. Doctors See Cluster of Enterovirus Cases

AP (Sep. 29, 2014) Doctors at the Children's Hospital of Colorado say they have treated over 4,000 children with serious respiratory illnesses since August. Nine of the patients have shown distinct neurological symptoms, including limb weakness. (Sept. 29) Video provided by AP
Powered by NewsLook.com
Dr.'s Unsure of Cause of Fast-Spreading Virus

Dr.'s Unsure of Cause of Fast-Spreading Virus

AP (Sep. 29, 2014) Doctors at the Children's Hospital of Colorado say they have treated over 4,000 children with serious respiratory illnesses since August. Nine of the patients have shown distinct neurological symptoms, including limb weakness. (Sept. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins