Featured Research

from universities, journals, and other organizations

Chromatin Structure: More Folding, More Complexity Than Expected

Date:
February 17, 2003
Source:
University Of Illinois At Urbana-Champaign
Summary:
New molecular technologies, some driven by the work of a researcher at the University of Illinois at Urbana-Champaign, are exposing unexpectedly high levels of DNA folding and complex protein-rich assemblages within the nucleus of cells that he says "seriously challenge the textbook models."

DENVER -- New molecular technologies, some driven by the work of a researcher at the University of Illinois at Urbana-Champaign, are exposing unexpectedly high levels of DNA folding and complex protein-rich assemblages within the nucleus of cells that he says "seriously challenge the textbook models."

Related Articles


"What we are seeing suggests that there may be machinery, not yet identified, that controls the folding and the movements of enzymes that turn genes on and off," said Andrew Belmont, a professor of cell and structural biology, who is giving a talk on the subject today at the annual meeting of the American Association for the Advancement of Science.

Belmont, who also is a medical doctor, discussed current trends of research on chromatin structure during a session on "The 'New' Nucleus: Mothership of the Human Genome." Chromatin is a part of a cell's nucleus that contains nucleic acids and proteins -- the genetic material necessary for cell division. During mitosis, chromatin folds and condenses.

The level of folding, however, is much higher than previously thought, Belmont said, and a lot of the enzyme complexes that work on DNA, for instance to allow gene regulation, have turned out to be surprisingly large.

"In this era of genome sequencing and gene identification, the fundamental question of how DNA folds within the mitotic chromosome and interphase nucleus, and the impact of this folding on gene expression, remains largely unknown," he said.

A startling discovery, unveiled by on-going research based on a technique to study the structure in living cells that Belmont announced in late 1996, is that chromosomes are constantly in motion. They gyrate constantly within their tiny confined territories.

Advances of his own technique allow him to watch as proteins move and come together as single packages as they approach their target receptors to activate a gene.

The genetic-engineering method developed by Belmont uses a specific protein-DNA interaction in which a protein binds to a specific target in DNA without altering chromosomal structure. Naturally occurring green fluorescent protein allows for viewing area in living cells by light microscopy or electron microscopes. The results include visual proof of chromosomal fibers 100 nanometers in diameter during folding and unfolding.

"For several decades, the basic paradigm for studying chromosome structure relied primarily on experimental approaches in which nuclei were exploded and chromosomes fragmented into small, soluble pieces that could be analyzed in the test tube using biochemical techniques," Belmont said. "However, over the past several years, development of novel imaging tools have provided a new window, allowing direct visualization of chromosomes within living cells."

As a result, scientific perspectives on chromosome structure and function have been dramatically altered, he said. "The picture emerging is of a cell nucleus, apparently tranquil, but concealing chromosomes and chromosomal proteins in constant motion and turnover. This highly dynamic behavior results in quasi-stable chromosome architecture poised for rapid response to signals from the cell environment."

A current question is how large, bulky protein complexes that mediate gene transcription can find their targets and gain access to the DNA, he said.

In the February issue of the journal Current Biology, Belmont and Sevinci Memedula of the University of Bucharest suggest that large protein assemblies approach a gene target in a stepwise fashion. Individual sub-units act as pioneers. They open, or remodel, their target for subsequent binding of the larger intact protein complex.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Chromatin Structure: More Folding, More Complexity Than Expected." ScienceDaily. ScienceDaily, 17 February 2003. <www.sciencedaily.com/releases/2003/02/030217115004.htm>.
University Of Illinois At Urbana-Champaign. (2003, February 17). Chromatin Structure: More Folding, More Complexity Than Expected. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2003/02/030217115004.htm
University Of Illinois At Urbana-Champaign. "Chromatin Structure: More Folding, More Complexity Than Expected." ScienceDaily. www.sciencedaily.com/releases/2003/02/030217115004.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins