Featured Research

from universities, journals, and other organizations

Electronic Circuit Rides A Chemical Film

Date:
February 20, 2003
Source:
University Of Illinois At Chicago
Summary:
To make useful devices from conducting polymers requires a degree of chemical wizardry that often proves elusive. University of Illinois at Chicago chemistry professor Luke Hanley has found a new and effective way around the problem. Hanley, along with UIC doctoral candidates Sanja Tepavcevic and Yongsoo Choi, has developed a method for growing conducting polymers that he calls Surface Polymerization by Ion-Assisted Deposition, or SPIAD for short.

Chains of molecules known as conducting polymers are versatile materials that can work like electronic circuits. Potential uses include flat panel displays, solar panels, sensing devices and transistors, to name just a few. Their invention won three scientists the Nobel Prize in chemistry.

But to make useful devices from conducting polymers requires a degree of chemical wizardry that often proves elusive. University of Illinois at Chicago chemistry professor Luke Hanley has found a new and effective way around the problem.

Hanley, along with UIC doctoral candidates Sanja Tepavcevic and Yongsoo Choi, has developed a method for growing conducting polymers that he calls Surface Polymerization by Ion-Assisted Deposition, or SPIAD for short. The method is described in the online Journal of the American Chemical Society that appeared Feb. 6, and which will appear in the March 5 print edition. His research was funded through a National Science Foundation grant.

"This is the polymerization, or chemical binding, of small molecules together at the surface to form a larger molecule. This occurs by an ion-assisted deposition process," said Hanley.

"Basically, the way it works is you have a surface upon which you want to grow a thin film. You put that into a vacuum chamber, pump all the air out, and you simultaneously deposit charged ions on to the surface and evaporate neutral molecules onto the surface. These ions and neutrals meet at the surface and form this continuous polymeric film."

Hanley has done work on ion-surface interactions for over a decade and has published a series of papers on taking individual ions and landing them on a surface.

"We've been able to show we can control the chemistry and shape of the surface on a nanometer scale," said Hanley. "It allows you to control what this thin film is on the sub-nanometer scale."

Working with thiophene, Hanley and his group tried to land individual ions onto a surface, hoping they'd link up to form a type of conducting polymer known as polythiophene. The ions "formed something," Hanley said, "but it wasn't an interesting polythiophene. So we brought in both an ion beam and neutral beam at the surface."

Using a commercially available instrument that provides a source of ions, Hanley modified the device to work with organic material, such as thiophene. "We can put organic molecules into it and get out the types of ions that we want," he said. "We can actually grow large areas of films fairly quickly by this method. We're not quite at manufacturing scale yet, but we've demonstrated that we know how to get to that point."

Hanley has high expectations for his conducting polymers and thinks the SPIAD method may open the door to many new and useful materials.

"We're beginning to explore different film properties using this growth method. I think it shows a lot of promise for creating a whole class of conducting polymers with applications you cannot achieve with existing methods.

"Essentially, this is another tool in the toolbox for producing these useful devices. I think we've demonstrated this is a new way to create these types of materials. Now we can look at trying to discover some of those newer materials by this method."


Story Source:

The above story is based on materials provided by University Of Illinois At Chicago. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Chicago. "Electronic Circuit Rides A Chemical Film." ScienceDaily. ScienceDaily, 20 February 2003. <www.sciencedaily.com/releases/2003/02/030220081316.htm>.
University Of Illinois At Chicago. (2003, February 20). Electronic Circuit Rides A Chemical Film. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2003/02/030220081316.htm
University Of Illinois At Chicago. "Electronic Circuit Rides A Chemical Film." ScienceDaily. www.sciencedaily.com/releases/2003/02/030220081316.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins