Featured Research

from universities, journals, and other organizations

Inactive Genes May Contribute To Failure Of Animals Cloned From Adult Cells, Study Finds

Date:
March 20, 2003
Source:
Whitehead Institute For Biomedical Research
Summary:
Only 1 percent to 3 percent of animals cloned from adult cells survive to birth; many die mysteriously very early in development, around the time of implantation. A new study suggests that a set of genes important in early development fails to reactivate in adult, or somatic, cell-derived clones, a finding that could help scientists skirt a major roadblock in cloning.

CAMBRIDGE, MA – Only 1 percent to 3 percent of animals cloned from adult cells survive to birth; many die mysteriously very early in development, around the time of implantation. A new study suggests that a set of genes important in early development fails to reactivate in adult, or somatic, cell-derived clones, a finding that could help scientists skirt a major roadblock in cloning.

"Most animals cloned from somatic cells fail in all seven species, while animals cloned from embryonic stem cells survive much better," said Rudolf Jaenisch, a researcher at Whitehead Institute for Biomedical Research and co-author of the new study, published in the current online issue of the journal Development. "We wanted to know why embryonic stem-cell derived clones survive so well while those derived from somatic cells do so poorly."

Scientists already knew that among those genes essential to normal embryonic development is the Oct4 gene, which prompts embryos to create pluripotent cells – cells that can form any tissue in the body. Researchers working with Whitehead Institute member David Page identified more than 60 genes that are expressed in normal mouse embryos. With an eye toward the Oct4 gene, they whittled the larger set of genes down to 10 that behave similarly to Oct4.

A team of scientists at Whitehead Institute and the University of Hawaii cloned two types of mouse embryos: one derived from embryonic stem cells and another from somatic cells. Scrutiny of the clones' genetic activity revealed that those made from embryonic stem cells expressed all 10 genes normally, while only 62 percent of somatic cell-derived clones correctly expressed the genes, said Alex Bortvin, a postdoctoral associate at Whitehead Institute and lead author of this new paper.

"This finding suggests that other genes that function together with Oct4 in control of early development also might be inefficiently expressed in somatic clones," Bortvin said.

Because the genes are involved in early development, they are turned off in adult cells. But as the debate over embryonic stem cell research continues, scientists must look to adult stem cells for cloning studies that could yield vital information about disease and cell development. So, figuring out how to help somatic cell-derived embryos survive to birth is high on the minds of researchers such as Jaenisch and his colleagues.

The scientists also are curious about the role Oct4-related genes play in pluripotency development, not an aim of this latest study.

"The functional importance of these genes has yet to be fully investigated," said Bortvin, whose future research will involve a deeper analysis of the function of Oct4-related genes.

At first glance, it may appear that the clones' failure to turn on this set of genes is the key to understanding early clone development failure. But the researchers are careful to note that while it may be possible to figure out a way to reactivate Oct4-related genes in clones created from somatic cells, that likely won't solve the problem of clone survival.

"There are hundreds of genes that are not correctly expressed in cloned animals," said Jaenisch, whose interest lies in therapeutic cloning designed to study disease. "The issue now is to make cloning more efficient."

This study, which is available now online, will be published in the mid-April print edition of the journal Development. Study co-authors include Kevin Eggan with Whitehead Institute; Helen Skaletsky and Deborah Berry, both with the Howard Hughes Medical Institute and Whitehead Institute; and Hidenori Akutsu and Ryuzo Yanagimachi, both with the University of Hawaii. The research was supported by the Howard Hughes Medical Institute and the National Institutes of Health.


Story Source:

The above story is based on materials provided by Whitehead Institute For Biomedical Research. Note: Materials may be edited for content and length.


Cite This Page:

Whitehead Institute For Biomedical Research. "Inactive Genes May Contribute To Failure Of Animals Cloned From Adult Cells, Study Finds." ScienceDaily. ScienceDaily, 20 March 2003. <www.sciencedaily.com/releases/2003/03/030320073640.htm>.
Whitehead Institute For Biomedical Research. (2003, March 20). Inactive Genes May Contribute To Failure Of Animals Cloned From Adult Cells, Study Finds. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2003/03/030320073640.htm
Whitehead Institute For Biomedical Research. "Inactive Genes May Contribute To Failure Of Animals Cloned From Adult Cells, Study Finds." ScienceDaily. www.sciencedaily.com/releases/2003/03/030320073640.htm (accessed July 30, 2014).

Share This




More Plants & Animals News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rodents Rampant in Gardens Around Louvre

Rodents Rampant in Gardens Around Louvre

AP (July 29, 2014) Food scraps and other items left on the grounds by picnickers brings unwelcome visitors to the grounds of the world famous and popular Louvre Museum in Paris. (July 29) Video provided by AP
Powered by NewsLook.com
Jane Goodall Warns Great Apes Face Extinction

Jane Goodall Warns Great Apes Face Extinction

AFP (July 29, 2014) The world's great apes face extinction within decades, renowned chimpanzee expert Jane Goodall warned Tuesday in a call to arms to ensure man's closest relatives are not wiped out. Duration: 00:58 Video provided by AFP
Powered by NewsLook.com
How Your Face Can Leave A Good Or Bad First Impression

How Your Face Can Leave A Good Or Bad First Impression

Newsy (July 29, 2014) Researchers have found certain facial features can make us seem more attractive or trustworthy. Video provided by Newsy
Powered by NewsLook.com
Rat Infestation at Paris' Tuileries Garden

Rat Infestation at Paris' Tuileries Garden

AFP (July 29, 2014) An infestation of rats is causing concern among tourists at Paris' most famous park -- the Tuileries garden next to the Louvre Museum. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins