Featured Research

from universities, journals, and other organizations

Researchers Use New Method To Accurately Identify Bacteria

Date:
May 13, 2003
Source:
University Of Arkansas, Fayetteville
Summary:
University of Arkansas researchers have used a high-tech analytical tool to identify proteins in bacteria and have shown it to be faster and more accurate than other currently used methods. The research could lead one day to better diagnosis and treatment of diseases and to early detection of biological terrorism threats.

FAYETTEVILLE, Ark. -- University of Arkansas researchers have used a high-tech analytical tool to identify proteins in bacteria and have shown it to be faster and more accurate than other currently used methods. The research could lead one day to better diagnosis and treatment of diseases and to early detection of biological terrorism threats.

Charles Wilkins, Distinguished Professor of chemistry and biochemistry, Jack Lay, director of the Arkansas Statewide Mass Spectrometry Facility, and their colleagues reported their findings in a recent issue of Analytical Chemistry.

The most common way to identify bacteria involves isolating them, growing them and examining them under microscopes, but this method is time-consuming, sometimes taking weeks to produce an identification. After the anthrax outbreak in 2001 when people were exposed to the deadly bacteria through contamination of mail, more researchers seriously began to study rapid methods of bacteria identification. Many bacteria exist in both deadly and benign strains, so tests that identify bacteria must do so down to the strain level. Researchers hope to get at this level by looking at proteins within bacteria and finding proteins unique to each strain.

Researchers seeking to speed up and simplify the identification process started using a technique called matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to examine bacterial proteins in an attempt to identify bacteria from specific protein markers. This technique, called time-of-flight mass spectrometry (MALDI-TOFMS), relies on ionizing bacteria, shooting the particles down a tube and measuring the amount of time it takes to go down the tube, then calculating the masses using the time it takes particles of known mass to travel down the tube. Although the method works more rapidly than microscopy, it leaves a big margin for error, and often it cannot distinguish between specific proteins within the bacteria.

"There are other things besides mass that can affect how long it takes a particle to go down the tube," Wilkins said.

The researchers decided to compare the current method with a different type of MALDI called Fourier transform mass spectrometry (MALDI-FTMS)--a technique that Lay calls "the Cadillac of mass spectrometry." In this technique, a laser beam ionizes the bacteria, and the ions follow a circular path in a magnetic field, each one cycling at a specific frequency that is directly related to its mass and to the magnetic field strength. The researchers can measure frequency with precision, which allows them to make accurate calculations of protein masses.

The investigators used Escherichia coli, a well-characterized bacteria that lives in the gut of humans and other animals and occasionally causes illness in humans. The E. coli genome, which codes for 4,300 proteins, has been mapped, and researchers can access information about these proteins in a computer database. Thus, they can compare the masses obtained through mass spectrometry techniques with the known information in the database and see how closely they correspond.

They found that the FTMS method had an error of 26 parts per million as opposed to an error of 200 parts per million for the time-of-flight method.

Analyzing bacteria will continue to challenge researchers, because the organisms respond to their environment more rapidly than almost anything else in nature, Lay said. To offset this issue, researchers will need to reproduce the same conditions in studies each time.

Even if the mass spectrometry technique never becomes a standard diagnostic test, it could still prove useful to medical researchers. E. coli, like other bacteria, have both toxic and non-toxic strains. Wilkins and Lay hope to identify proteins that differentiate the benign and the disease-causing strains, and identify protein markers in antibiotic-resistant microorganisms.

"The data produced from our studies may simplify other tests down the road," Lay said.

Eventually, identifying protein markers in bacteria such as E. Coli may allow medical researchers to focus on certain proteins involved in disease, leading to a new generation of anti-microbial medicines.


Story Source:

The above story is based on materials provided by University Of Arkansas, Fayetteville. Note: Materials may be edited for content and length.


Cite This Page:

University Of Arkansas, Fayetteville. "Researchers Use New Method To Accurately Identify Bacteria." ScienceDaily. ScienceDaily, 13 May 2003. <www.sciencedaily.com/releases/2003/05/030513081224.htm>.
University Of Arkansas, Fayetteville. (2003, May 13). Researchers Use New Method To Accurately Identify Bacteria. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2003/05/030513081224.htm
University Of Arkansas, Fayetteville. "Researchers Use New Method To Accurately Identify Bacteria." ScienceDaily. www.sciencedaily.com/releases/2003/05/030513081224.htm (accessed September 17, 2014).

Share This



More Plants & Animals News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Some Tobacco Farmers Thrive Amid Challenges

Some Tobacco Farmers Thrive Amid Challenges

AP (Sep. 16, 2014) The South's tobacco country is surviving, and even thriving in some cases, as demand overseas keeps growers in the fields of one of America's oldest cash crops. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

AFP (Sep. 16, 2014) Scientists say a female colossal squid weighing an estimated 350 kilograms (770 lbs) and thought to be only the second intact specimen ever found was carrying eggs when discovered in the Antarctic. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins