Featured Research

from universities, journals, and other organizations

Ultra-cold Substance Shows Stripes -- Behavior Explained

Date:
June 12, 2003
Source:
Ohio State University
Summary:
Physicists at Ohio State University may have explained some strange behavior of the ultra-cold material known as Bose-Einstein condensate (BEC). The new analysis shows that scientists are closer than ever to harnessing BEC to perform useful functions such as quantum computing, said Tin-Lun Ho, professor of physics at Ohio State and the project's principal investigator.

COLUMBUS, Ohio -- Physicists at Ohio State University may have explained some strange behavior of the ultra-cold material known as Bose-Einstein condensate (BEC). The new analysis shows that scientists are closer than ever to harnessing BEC to perform useful functions such as quantum computing, said Tin-Lun Ho, professor of physics at Ohio State and the project's principal investigator.

Ho has pioneered theoretical studies of BEC, an entirely new form of matter that defies description as a solid, liquid, or gas. The condensate forms when atoms of a single chemical element such as rubidium are cooled to temperatures so low that they condense together. One glob of the material measures less than half the width of a human hair, and functions as a single atom, or "superatom," that operates under the laws of quantum physics.

Ho's work may help scientists understand how BEC could be used in quantum computing, making powerful computer chips so small that they could not be seen by the naked eye.

Scientists can spin a glob of BEC by suspending it in a magnetic field and nudging it with pulses of laser light, causing an array of whirlpool-like vortices to form in the material. And when they squeeze the material in a magnetic field, the vortices appear to melt together and form stripes.

This revolutionary control of matter in the laboratory could lead to more precise time measurement. Satellite navigation, global positioning systems, and the alignment of astronomical telescopes all of which depend on precise time measurements.

But the melting is merely an illusion, according to Ho and postdoctoral researcher Erich Mueller.

In a study published today on the Web in the journal Physical Review A, they report that the BEC only appears to form stripes because the lattice pattern changes -- the vortices remain separate the entire time.

"The equations were so simple we developed them with pencil and paper -- no computer was needed," Ho said. "That means we are truly beginning to understand the Bose-Einstein condensate, and that's the first step to learning whether we can control its behavior."

The finding solves a mystery uncovered by one of the first creators of BEC, Eric Cornell of the University of Colorado at Boulder. In 1999, Cornell's team and two other experimental groups were able to spin BEC so fast that they caused a lattice of evenly spaced vortices to form within the material.

In 2002, Ho suggested that scientists might be able to cause BEC to achieve a much-desired quantum state, called the Quantum Hall state, if they increased the density of the vortices by spinning the BEC even faster. Inspired by this suggestion, Cornell decided to increase the density by squeezing the BEC. He saw the material change periodically between an array of vortices and a set of stripes, as if the vortex lattice was melting and then returning to its coherent form again and again.

"We had to wonder, if the vortices just melt together, how could they return to an organized pattern? We realized something strange was happening," Ho said.

When he and Mueller derived analytical equations to model the behavior of the condensate when it's squeezed, to their surprise, they found that the results perfectly matched what Cornell saw.

But the vortices did not actually melt together, they just re-arranged themselves from a perfect lattice into a different and entirely unique flow pattern, Ho said. The behavior suggests that the density of the BEC is sensitive to even very small changes in the vortex array.

The significance of the new calculations, according to Ho, is that they show experimental scientists such as Cornell are on the right track in achieving the Quantum Hall state, even though a higher density of vortices is still needed to reach this goal.

Ho feels his latest work bodes well for BEC's future possibilities.

"Any control you have over the material will help with processing quantum information," he said. "I'm optimistic that a lot of progress will happen in this area soon, and the dream of quantum computation may one day be realized."

Other applications may be possible along the way. For instance, this revolutionary control of matter in the laboratory could lead to more precise time measurement. Satellite navigation, global positioning systems, and the alignment of astronomical telescopes all depend on precise time measurements.

"Quantum computing is a distant goal, but in the process of reaching that goal, there are all kinds of benefits," Ho said.

This work was supported by NASA and the National Science Foundation.


Story Source:

The above story is based on materials provided by Ohio State University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University. "Ultra-cold Substance Shows Stripes -- Behavior Explained." ScienceDaily. ScienceDaily, 12 June 2003. <www.sciencedaily.com/releases/2003/06/030611080319.htm>.
Ohio State University. (2003, June 12). Ultra-cold Substance Shows Stripes -- Behavior Explained. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2003/06/030611080319.htm
Ohio State University. "Ultra-cold Substance Shows Stripes -- Behavior Explained." ScienceDaily. www.sciencedaily.com/releases/2003/06/030611080319.htm (accessed August 27, 2014).

Share This




More Matter & Energy News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) — Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) — Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) — Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) — An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins