Featured Research

from universities, journals, and other organizations

A New View Of The Crayfish Brain: MRI Technique Shows Detailed View Of Neural Pathways

Date:
June 16, 2003
Source:
Emory University Health Sciences Center
Summary:
A Center for Behavioral Neuroscience research team led by Emory University's Xiaoping Hu, PhD and Georgia State University's Don Edwards, PhD, has developed a magnetic resonance imaging (MRI) technique using manganese for identifying anatomical structures and neural pathways in the crayfish brain.

A Center for Behavioral Neuroscience research team led by Emory University's Xiaoping Hu, PhD and Georgia State University's Don Edwards, PhD, has developed a magnetic resonance imaging (MRI) technique using manganese for identifying anatomical structures and neural pathways in the crayfish brain. The technique, which was adapted from an imaging technique used on rodents, employs the paramagnetic element manganese to image neural activity in living crayfish whose brains measure only 3 mm. wide. Initial tests of the technique have yielded detailed anatomical images of the crayfish brain that have never before been seen. Dr. Hu is professor of biomedical engineering and Georgia Research Alliance Eminent Scholar in Imaging at Emory University School of Medicine. Dr. Edwards is Professor of Biology at Georgia State University.

"Prior to the development of this technology, it would take weeks of histology to identify simple structures in the crayfish brain," said CBN post-doctoral fellow Jens Herberholz, PhD. "Now we can generate these images in just a few hours."

Neuroscientists have been studying crayfish, an invertebrate, for more than 50 years. The simple neural network and well-defined social hierarchies of the crayfish make the animals ideal models for behavioral research, especially studies of aggression. In an initial encounter, two crayfish typically will fight one another until dominant/subordinate roles are established. These roles remain stable between the two animals, but may change when they encounter other crayfish.

A signature behavior associated with crayfish aggression is the tail flip. One type of tail flip indicates aggressiveness, while others signify subordination and the intention to escape. In their research, Dr. Edwards and Dr. Herberholz have been using conventional methods of electrophysiology to determine the neural circuitry of the tail flip. The technique, however, can only delineate single neural pathways. With manganese-enhanced MRI, the scientists hope to determine activation of multiple pathways simultaneously.

"Our goal is to use manganese as an activity marker for identifying entire patterns of brain activation in dominant and subordinate crayfish," said Herberholz. "We also want to compare changes that occur before and after an aggressive encounter."

MRI technology, which was developed for imaging the human brain, has rarely been used to study a brain of the crayfish's small size. To overcome the limitations of the technology, Dr. Hu and Dr. Herberholz are working to improve the resolution of their small animal MRI scanner and develop a more sensitive coil customized to the crayfish's head.

Manganese can be rapidly infused into the crayfish brain and is well tolerated. For these reasons, Hu projected it will be possible to conduct longitudinal studies of individual crayfish using MRI technology to assess changes that occur in its brain over an extended period.

Dr. Hu and Dr. Edwards said the development of manganese-enhanced MRI for studying the crayfish could not have happened without the Center for Behavioral Neuroscience. Dr. Hu recalled an initial meeting last year when Edwards spoke of his need to image the crayfish brain. "I had never before worked with crayfish," he said. "Now we have a powerful new tool for studying the invertebrate brain."

The Center for Behavioral Neuroscience (CBN), a Science and Technology Center funded by the National Science Foundation with additional support from the Georgia Research Alliance, is a research and education consortium consisting of eight universities in the Atlanta area. CBN researchers study four aspects of behavioral neuroscience: fear, aggression, affiliation, and reproduction.


Story Source:

The above story is based on materials provided by Emory University Health Sciences Center. Note: Materials may be edited for content and length.


Cite This Page:

Emory University Health Sciences Center. "A New View Of The Crayfish Brain: MRI Technique Shows Detailed View Of Neural Pathways." ScienceDaily. ScienceDaily, 16 June 2003. <www.sciencedaily.com/releases/2003/06/030616085807.htm>.
Emory University Health Sciences Center. (2003, June 16). A New View Of The Crayfish Brain: MRI Technique Shows Detailed View Of Neural Pathways. ScienceDaily. Retrieved September 3, 2014 from www.sciencedaily.com/releases/2003/06/030616085807.htm
Emory University Health Sciences Center. "A New View Of The Crayfish Brain: MRI Technique Shows Detailed View Of Neural Pathways." ScienceDaily. www.sciencedaily.com/releases/2003/06/030616085807.htm (accessed September 3, 2014).

Share This



More Mind & Brain News

Wednesday, September 3, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com
Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins