Featured Research

from universities, journals, and other organizations

Stem-cell Defect Underlies Common Genetic Disorder

Date:
August 15, 2003
Source:
Howard Hughes Medical Institute
Summary:
Howard Hughes Medical Institute researchers have found that Hirschsprung disease, one of the most common genetic disorders, is caused by a defect that blocks neural stem cells from forming nerves that control the lower intestine.

Howard Hughes Medical Institute researchers have found that Hirschsprung disease, one of the most common genetic disorders, is caused by a defect that blocks neural stem cells from forming nerves that control the lower intestine.

Hirschsprung disease occurs in one in 5,000 live births and causes a potentially fatal disorder that prevents the proper transport of food through the gut. The new findings suggest that it might one day be possible to correct the disease by transplanting neural stem cells from a different part of the gut.

Neural crest stem cells (NCSCs) are cells that mature into neurons and supporting neural cells found in the gut. The studies provide important general insight into how stem cells -- the immature cells that can develop into mature nerve and other cells -- are controlled. While the properties of stem cells have been widely studied, relatively little is known about how they are regulated during development.

The researchers, led by Howard Hughes Medical Institute (HHMI) investigator Sean J. Morrison, HHMI associate Toshihide Iwashita, and graduate student Eve Kruger at the University of Michigan, published their findings in the August 15, 2003, issue of Science.

"Some of the genetic mutations that cause Hirschsprung have been identified, but they explain only about half the cases," said Morrison. "Our work identifies new genes whose mutations might underlie the disease. We've found the mechanism by which one type of mutation impairs the function of the neural crest stem cells that give rise to the enteric nervous system."

The researchers began by conducting a global comparison of genes expressed in whole mouse fetuses with those genes expressed only in the fetal gut NCSCs. To make this comparison, they applied RNA extracts from the two sources to microarrays, or "gene chips," which are arrays of thousands of gene probes that can signal the activity of specific genes. Using this process, the researchers found that the ten genes that were most highly expressed in the gut NCSCs relative to the whole fetus, included four that had already been linked to Hirschsprung disease in humans.

"This finding was exciting because if four of our top ten genes have already been implicated in Hirschsprung disease, it's an attractive hypothesis that some of the other genes we found upregulated could also cause the disorder when mutated," said Morrison.

Subsequent studies by Morrison and his colleagues focused on understanding the function of one of the identified genes, called Ret. They chose Ret because it is known to code for a receptor protein that enables stem cells to respond to a neuronal guidance protein called GDNF (glial-derived neurotrophic factor). Mutations in either Ret or GDNF genes had already been shown to cause Hirschsprung disease in both humans and mice, said Morrison.

Using antibody markers and NCSC cultures, the researchers confirmed that Ret proteins were expressed on the surface of stem cells and that the Ret receptor was required for the migration of the stem cells in response to GDNF in culture.

To test whether the loss of Ret prevented normal NCSC migration in the gut, the researchers examined the behavior of the NCSCs in the guts of Ret-deficient mice. These experiments revealed a dramatic decrease in the migration of NCSCs in the animals' guts.

"Until this work, what was missing was whether these molecular pathways act within neural crest stem cells to promote migration," said Morrison. "Our finding that these pathways are all expressed in neural crest stem cells and that they regulate the function of the cells, provides a cellular locus for people to study directly how those pathways interact."

Morrison also speculated that the research could have implications for correcting the genetic defect underlying Hirschsprung disease. "Our findings suggest that in people with mutations in Ret, the primary reason the enteric nervous system doesn't form in the hindgut is because neural crest stem cells just never migrate into the hindgut. Perhaps we can bypass that migratory defect by taking stem cells from the foregut, expanding them in culture, and then transplanting them into the hindgut."

Morrison emphasized that the findings demonstrate the value of a relatively new approach that uses microarrays for identifying activated genes and then knocking out those activated genes in mice to determine how those genes regulate stem cell function. "We think that this represents a powerful combination for getting important insights into the causes of other types of birth defects or other types of diseases," he said.


Story Source:

The above story is based on materials provided by Howard Hughes Medical Institute. Note: Materials may be edited for content and length.


Cite This Page:

Howard Hughes Medical Institute. "Stem-cell Defect Underlies Common Genetic Disorder." ScienceDaily. ScienceDaily, 15 August 2003. <www.sciencedaily.com/releases/2003/08/030815074839.htm>.
Howard Hughes Medical Institute. (2003, August 15). Stem-cell Defect Underlies Common Genetic Disorder. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2003/08/030815074839.htm
Howard Hughes Medical Institute. "Stem-cell Defect Underlies Common Genetic Disorder." ScienceDaily. www.sciencedaily.com/releases/2003/08/030815074839.htm (accessed September 20, 2014).

Share This



More Health & Medicine News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com
How The 'Angelina Jolie Effect' Increased Cancer Screenings

How The 'Angelina Jolie Effect' Increased Cancer Screenings

Newsy (Sep. 19, 2014) Angelina's Jolie's decision to undergo a preventative mastectomy in 2013 inspired many women to seek early screenings for the disease. Video provided by Newsy
Powered by NewsLook.com
The Cost of Ebola

The Cost of Ebola

Reuters - Business Video Online (Sep. 18, 2014) As Sierra Leone prepares for a three-day "lockdown" in its latest bid to stem the spread of Ebola, Ciara Lee looks at the financial implications of fighting the largest ever outbreak of the disease. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins