Featured Research

from universities, journals, and other organizations

Subversive Strep Bug Strategy Revealed

Date:
August 29, 2003
Source:
NIH/National Institute Of Allergy And Infectious Diseases
Summary:
Researchers at the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), have discovered how Streptococcus pyogenes (S. pyogenes), the bacterium responsible for "flesh-eating" infections, gains a foothold in the body by subverting a key immune system cell.

Researchers at the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), have discovered how Streptococcus pyogenes (S. pyogenes), the bacterium responsible for "flesh-eating" infections, gains a foothold in the body by subverting a key immune system cell.

Related Articles


"The ability of this very common bug, which causes strep throat and other infections, to modulate the gene activity of an immune system cell is remarkable and has never before been seen on this scale," says Frank R. DeLeo, Ph.D., a researcher at NIAID's Rocky Mountain Laboratories (RML) in Hamilton, MT. The findings are scheduled to be published in Proceedings of the National Academy of Sciences, USA this week.

Insight into streptococcal infection is one product of a comprehensive picture of immune cell–bacteria interactions developed by the RML scientists. Using microarray technology, Dr. DeLeo and his colleagues created a "snapshot" of how all the genes in a type of white blood cell, called a neutrophil, react following exposure to a variety of bacteria.

"This is work of seminal importance," says NIAID Director Anthony S. Fauci, M.D. "By demonstrating that neutrophils respond with altered gene expression to bacterial invasion, the investigators have exposed dozens of possible targets for drug therapies. These findings are likely to be broadly applicable to many types of microorganisms that cause disease in humans, and could lead to new treatments that augment the immune response against multiple pathogens," he adds.

Neutrophils are the most abundant type of white blood cell and a central player in the body's innate immune system. Like a S.W.A.T. team, neutrophils swarm to the site of infection in the first few minutes after a bacterial attack. Quickly they engulf the invading organisms and destroy them.

Neutrophils are genetically programmed to shut themselves down after they engulf and kill microbes. Because of this controlled shutdown, cellular debris is cleared away from the site of the infection, and any inflammation subsides. Ordinarily, neutrophils are highly effective at their job. Indeed, notes Dr. DeLeo, the vast majority of infectious organisms never make it past this first line of defense.

The broad outlines of neutrophil action were known previously, Dr. DeLeo says, but details have been scarce because the cells are difficult to study. For example, scientists believed that the fate of a neutrophil was set during its maturation, well before any encounter with a disease organism.

The NIAID scientists examined the struggle between bug and blood cell as it played out at the gene level. First, they mixed neutrophils extracted from the blood of healthy volunteers with bacteria derived from clinical cases of such diverse conditions as pharyngitis, tick-borne relapsing fever, cellulitis, pneumonia and meningitis. Neutrophils engulfed most kinds of bacteria rapidly, between 10 and 60 minutes after encountering them. Three to six hours later, microarray analysis revealed that neutrophil genes involved in recruiting other immune system cells to the site of infection were active, as were genes required for controlled self-destruction. The degree of genetic activity by neutrophils surprised the researchers, Dr. DeLeo says. Far from being mere passive receptacles for microorganisms, neutrophils exhibit considerable genetic complexity and reactivity, the investigators discovered.

The greatest surprise in the study came when the researchers examined S. pyogenes. S. pyogenes stimulated almost 400 neutrophil genes that had not been activated by the other kinds of bacteria. Furthermore, activation occurred much sooner following engulfment. Most significantly, the bacterium caused neutrophils to self-destruct in an uncontrolled fashion. Essentially, explains Dr. DeLeo, S. pyogenes prevents the neutrophil from either recruiting help or completing an orderly shutdown sequence.

"Dr. DeLeo and his co-investigators have gained an important new insight into how S. pyogenes creates conditions favoring its survival," says Thomas Kindt, Ph.D., director of NIAID's Division of Intramural Research. "Knowing how this extremely common bug evades our immune defenses opens exciting new avenues for research into ways to hamper this evasive maneuver."

NIAID is a component of the National Institutes of Health (NIH), which is an agency of the Department of Health and Human Services. NIAID supports basic and applied research to prevent, diagnose and treat infectious and immune-mediated illnesses, including HIV/AIDS and other sexually transmitted diseases, illness from potential agents of bioterrorism, tuberculosis, malaria, autoimmune disorders, asthma and allergies.

###

Reference: S D Kobayashi et al. Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils. Proceedings of the National Academy of Sciences. DOI: 10.1073.pnas.1833375100.

Press releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.


Story Source:

The above story is based on materials provided by NIH/National Institute Of Allergy And Infectious Diseases. Note: Materials may be edited for content and length.


Cite This Page:

NIH/National Institute Of Allergy And Infectious Diseases. "Subversive Strep Bug Strategy Revealed." ScienceDaily. ScienceDaily, 29 August 2003. <www.sciencedaily.com/releases/2003/08/030829071610.htm>.
NIH/National Institute Of Allergy And Infectious Diseases. (2003, August 29). Subversive Strep Bug Strategy Revealed. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2003/08/030829071610.htm
NIH/National Institute Of Allergy And Infectious Diseases. "Subversive Strep Bug Strategy Revealed." ScienceDaily. www.sciencedaily.com/releases/2003/08/030829071610.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins