Featured Research

from universities, journals, and other organizations

Analysis Of Stratospheric Air Resolves Enigma Of Hydrogen Balance In Earth's Atmosphere

Date:
September 2, 2003
Source:
University Of California - Berkeley
Summary:
Discovery of the last piece of a long-standing puzzle -- what happens to hydrogen gas in the atmosphere -- will help scientists assess the impact of additional hydrogen escaping into the atmosphere if America moves to hydrogen-fueled vehicles.

Berkeley -- Discovery of the last piece of a long-standing puzzle -- what happens to hydrogen gas in the atmosphere -- will help scientists assess the impact of additional hydrogen escaping into the atmosphere if America moves to hydrogen-fueled vehicles.

In a study published in the Aug. 21 issue of Nature, a team of scientists from the University of California, Berkeley, the California Institute of Technology, the National Center for Atmospheric Research in Boulder, Colo., and UC Irvine finally balances the Earth's hydrogen budget, accounting for where the hydrogen comes from and where it goes.

"A balanced budget now means that we may be better able to predict what will happen if and when humans introduce and leak into the atmosphere vast quantities of hydrogen for fuel cells," said Kristie Boering, professor of chemistry and of earth and planetary science at UC Berkeley.

Until now, scientists thought they understood most sources and sinks of hydrogen -- where it is produced and how it gets taken up in chemical reactions in the soil, the oceans and the atmosphere. But two distinct methods used to track the hydrogen provided significantly different results.

Scientists measuring hydrogen concentrations found that the major sink for hydrogen was in the soil -- microbes metabolize the hydrogen gas (H2) for energy, thus removing hydrogen from the air, where it is one of the most abundant trace gases after methane.

Those tracing the course of hydrogen by looking at the relative amounts of two of its isotopes -- standard hydrogen, whose nucleus consists of only one proton, and deuterium, which harbors an extra neutron in its nucleus -- got a different answer. The data seemed to point to the major sink being reaction of hydrogen gas in the atmosphere with OH radicals, which "cleanse" the atmosphere of many reactive gases.

What led many scientists to this last conclusion was the significant enrichment of deuterium in H2, or molecular hydrogen, in the atmosphere near the Earth's surface. Deuterium, which on Earth is only one ten-thousandth as common as hydrogen, is 12 percent more enriched in atmospheric H2 than is water (H2O) in the world's oceans. For many years, no other source or sink for hydrogen besides reaction with OH radicals in the atmosphere was thought capable of producing the large deuterium enrichment observed.

UC Berkeley's Boering, who specializes in isotopic analysis of greenhouse gases, decided to look for an answer to this enigma in the upper atmosphere, or stratosphere. The stratosphere stretches from 10 to 50 kilometers (6 to 30 miles) above the surface, and contains the ozone layer protecting the Earth from ultraviolet rays. Stratospheric H2 is extremely enriched in deuterium, with an enrichment up to 32 percent larger than in the H2 near the Earth's surface.

"Hydrogen in the stratosphere is the most isotopically enriched material found on Earth apart from compounds in unusual meteorites," Boering said. "These first-ever measurements in the stratosphere -- far from the soil microbe sink and surface sources such as fossil fuel combustion -- allowed us to examine how deuterium is enriched or depleted by processes solely in the atmosphere."

Samples of stratospheric air were captured by a modified U-2 spy plane, an ER-2, operated by NASA. Nearly 500 samples of air were obtained during flights dating back to 1996.

Her isotopic analysis showed that the extreme deuterium enrichment observed in stratospheric H2 must result not only from deuterium enrichment by the destruction of H2 when it reacts with OH, but also from deuterium enrichment in the series of chemical reactions occurring as methane (CH4) is oxidized to produce H2. In both instances, reactions involving deuterium proceed at a different rate than those involving hydrogen, leading to products with a deuterium/hydrogen ratio different from the ratio in the reacting chemicals.

"The global atmospheric hydrogen budget was an enigma for some time because people didn't realize that deuterium enrichment in atmospheric H2 could be due to the methane source," Boering said. "Our measurements resolve this, showing that the H2 produced from methane oxidation produces quite enriched H2 and helps to 'balance' the H2 budget."

When these new data are combined with the known deuterium-hydrogen ratios of other reactions involving hydrogen -- uptake of H2 by soil microbes and the ocean, plus production by incomplete burning of fossil fuels, biomass burning and production by microbes -- the sources and sinks finally balance, Boering said.

"Our measurements and analysis are a step forward in understanding the H2 budget because they help resolve the discrepancy between the budget derived from H2 concentration measurements versus that derived from H2 isotope measurements," she said.

Boering's analysis was possible thanks to the development of a new technique by Caltech geochemist John Eiler to measure isotope ratios using as little as 50-100 milliliters of air -- less than half a cup -- instead of the 4,000 liters needed previously -- the approximate volume of a large home propane tank. Obtaining stratospheric air in such large quantities would be difficult, Boering said. Eiler's technique involves mass spectrometry to separate different isotopes based on their slight weight differences.

Coauthors on the paper include Caltech's Eiler and post-doctoral researcher Thom Rahn, now at Los Alamos National Laboratory; UC Berkeley graduate student Michael McCarthy; and colleagues from the National Center for Atmospheric Research and UC Irvine.

Boering's research is supported by the National Science Foundation, the David and Lucile Packard Foundation and the NASA Upper Atmosphere Research Program.


Story Source:

The above story is based on materials provided by University Of California - Berkeley. Note: Materials may be edited for content and length.


Cite This Page:

University Of California - Berkeley. "Analysis Of Stratospheric Air Resolves Enigma Of Hydrogen Balance In Earth's Atmosphere." ScienceDaily. ScienceDaily, 2 September 2003. <www.sciencedaily.com/releases/2003/09/030902074301.htm>.
University Of California - Berkeley. (2003, September 2). Analysis Of Stratospheric Air Resolves Enigma Of Hydrogen Balance In Earth's Atmosphere. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2003/09/030902074301.htm
University Of California - Berkeley. "Analysis Of Stratospheric Air Resolves Enigma Of Hydrogen Balance In Earth's Atmosphere." ScienceDaily. www.sciencedaily.com/releases/2003/09/030902074301.htm (accessed October 22, 2014).

Share This



More Earth & Climate News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

San Diego Zoo's White Rhinos Provide Hope for the Critically Endangered Species

San Diego Zoo's White Rhinos Provide Hope for the Critically Endangered Species

Reuters - Light News Video Online (Oct. 22, 2014) — The pair of rare white northern rhinos bring hope for their species as only six remain in the world. Elly Park reports. Video provided by Reuters
Powered by NewsLook.com
Trick-or-Treating Banned Because of Polar Bears

Trick-or-Treating Banned Because of Polar Bears

Buzz60 (Oct. 21, 2014) — Mother Nature is pulling a trick on the kids of Arviat, Canada. As Mara Montalbano (@maramontalbano) tells us, the effects of global warming caused the town to ban trick-or-treating this Halloween. Video provided by Buzz60
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) — He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
How Detroit's Money Woes Led To U.N.-Condemned Water Cutoffs

How Detroit's Money Woes Led To U.N.-Condemned Water Cutoffs

Newsy (Oct. 20, 2014) — The United Nations says water is a human right, but should it be free? Detroit has cut off water to residents who can't pay, and the U.N. isn't happy. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins