Featured Research

from universities, journals, and other organizations

Mouse, Stripped Of A Key Gene, Resists Diabetes

Date:
September 3, 2003
Source:
University Of Wisconsin-Madison
Summary:
An engineered mouse, already known to be immune to the weight gain ramifications of a high-calorie, high-fat diet, now seems able to resist the onset of diabetes. The mouse, stripped of a gene known as SCD-1, is apparently impervious to the negative effects of the type of diet that, for many people, has significant health and social consequences.

MADISON - An engineered mouse, already known to be immune to the weight gain ramifications of a high-calorie, high-fat diet, now seems able to resist the onset of diabetes.

Related Articles


The mouse, stripped of a gene known as SCD-1, is apparently impervious to the negative effects of the type of diet that, for many people, has significant health and social consequences.

"We think this animal model may be protected against diabetes," says James Ntambi, a University of Wisconsin-Madison professor of biochemistry and Steenbock professor of nutrition, and the senior author of a report describing the remarkable mouse in this week's (Sept. 1) online editions of the Proceedings of the National Academy of Sciences (PNAS).

The new finding is important because it provides critical genetic and biochemical clues to diet, obesity and the onset of a disease that affects as much as 6 percent of the U.S. population.

Type II diabetes, which accounts for about 90 percent of the incidence of diabetes in the United States, is a chronic disease caused by a problem in the way the body makes or uses insulin. Insulin is a hormone secreted by the pancreas that, under healthy circumstances, plays an essential role in moving glucose from blood to cells where the sugar's energy is expended.

In many instances, obesity and diabetes go hand in hand. Between 75 and 80 percent of people with type II diabetes are obese, although the disease can also develop in lean people, especially the elderly.

The discovery of a gene that seems to exercise significant influence over both weight gain and glucose regulation promises a potentially significant window into both conditions and their relationship. The gene makes an enzyme called SCD. It affects the production of fatty acids, and because humans have SCD-1 equivalents, the new finding helps explain why some people, who may lack the gene, remain lean and diabetes free, despite a rich, fatty diet.

"We are beginning to suspect that obese individuals have increased expression of this enzyme," says Ntambi. "If you reduce expression of this enzyme, you reduce fat expression in muscle."

This new insight into the gene and its influence could herald the development of new drugs to prevent both diabetes and obesity as it may help scientists zero in on the underlying problems that lead to both conditions.

In the engineered mice, the Wisconsin team observed that muscle cells were more sensitive to insulin, enabling the cells to absorb glucose and avoid hyperglycemia. Elevated levels of glucose in the blood prompt the pancreas to produce more insulin, which tends to make cells even more resistant to the critical hormone.

"In this animal, there is increased insulin signaling or sensitivity," Ntambi explains. "When insulin binds to the cell's insulin receptor, it triggers a cascade of events " that enables the animal to successfully regulate levels of blood sugar.

"There are lots of steps involved in the process, and in the case of type II diabetes things go wrong in some of those events," Ntambi says. "What we found in these animals is that the insulin signaling steps in muscle are all enhanced, despite low levels of insulin in plasma. We don't see a defect yet."

The work by the Wisconsin team was funded primarily by the National Institutes of Health and in part by a grant from Xenon Genetics, Inc.

In addition to Ntambi, co-authors of the PNAS report include Shaikh Mizanoor Rahman, Agnieszka Dobrzyn, Pawel Dobrzyn, Seong-Ho Lee and Makoto Miyazaki.


Story Source:

The above story is based on materials provided by University Of Wisconsin-Madison. Note: Materials may be edited for content and length.


Cite This Page:

University Of Wisconsin-Madison. "Mouse, Stripped Of A Key Gene, Resists Diabetes." ScienceDaily. ScienceDaily, 3 September 2003. <www.sciencedaily.com/releases/2003/09/030903074002.htm>.
University Of Wisconsin-Madison. (2003, September 3). Mouse, Stripped Of A Key Gene, Resists Diabetes. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2003/09/030903074002.htm
University Of Wisconsin-Madison. "Mouse, Stripped Of A Key Gene, Resists Diabetes." ScienceDaily. www.sciencedaily.com/releases/2003/09/030903074002.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) — Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com
Madagascar Working to Contain Plague Outbreak

Madagascar Working to Contain Plague Outbreak

AFP (Nov. 24, 2014) — Madagascar said Monday it is trying to contain an outbreak of plague -- similar to the Black Death that swept Medieval Europe -- that has killed 40 people and is spreading to the capital Antananarivo. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins